GridSearchCV(cv=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=5, test_size=14),
             estimator=Pipeline(steps=[('tree_feature_engineering',
                                        Pipeline(steps=[('tree_preprocessor',
                                                         ColumnTransformer(remainder='passthrough',
                                                                           transformers=[('cat',
                                                                                          Pipeline(steps=[('one_hot',
                                                                                                           OneHotEncoder())]),
                                                                                          ['season',
                                                                                           'mnth',
                                                                                           'holiday',
                                                                                           'weekday',
                                                                                           'workingday',
                                                                                           'weathersit'])]))...
                                                     n_estimators=100,
                                                     n_jobs=None,
                                                     num_parallel_tree=None,
                                                     predictor=None,
                                                     random_state=None,
                                                     reg_alpha=None,
                                                     reg_lambda=None,
                                                     scale_pos_weight=None,
                                                     subsample=None,
                                                     tree_method=None,
                                                     validate_parameters=None,
                                                     verbosity=None))]),
             param_grid={'tree_regressor__max_depth': [3, 5, 8, 13],
                         'tree_regressor__min_child_weight': [0.01, 0.5, 1,
                                                              10]},
             scoring='neg_root_mean_squared_error')
Pipeline(steps=[('tree_preprocessor',
                 ColumnTransformer(remainder='passthrough',
                                   transformers=[('cat',
                                                  Pipeline(steps=[('one_hot',
                                                                   OneHotEncoder())]),
                                                  ['season', 'mnth', 'holiday',
                                                   'weekday', 'workingday',
                                                   'weathersit'])]))])
ColumnTransformer(remainder='passthrough',
                  transformers=[('cat',
                                 Pipeline(steps=[('one_hot', OneHotEncoder())]),
                                 ['season', 'mnth', 'holiday', 'weekday',
                                  'workingday', 'weathersit'])])
['season', 'mnth', 'holiday', 'weekday', 'workingday', 'weathersit']
OneHotEncoder()
passthrough
XGBRegressor(base_score=None, booster=None, colsample_bylevel=None,
             colsample_bynode=None, colsample_bytree=None,
             enable_categorical=False, gamma=None, gpu_id=None,
             importance_type=None, interaction_constraints=None,
             learning_rate=None, max_delta_step=None, max_depth=None,
             min_child_weight=None, missing=nan, monotone_constraints=None,
             n_estimators=100, n_jobs=None, num_parallel_tree=None,
             predictor=None, random_state=None, reg_alpha=None, reg_lambda=None,
             scale_pos_weight=None, subsample=None, tree_method=None,
             validate_parameters=None, verbosity=None)