GridSearchCV(cv=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=5, test_size=14), estimator=Pipeline(steps=[('tree_feature_engineering', Pipeline(steps=[('tree_preprocessor', ColumnTransformer(remainder='passthrough', transformers=[('cat', Pipeline(steps=[('one_hot', OneHotEncoder())]), ['season', 'mnth', 'holiday', 'weekday', 'workingday', 'weathersit'])]))... n_estimators=100, n_jobs=None, num_parallel_tree=None, predictor=None, random_state=None, reg_alpha=None, reg_lambda=None, scale_pos_weight=None, subsample=None, tree_method=None, validate_parameters=None, verbosity=None))]), param_grid={'tree_regressor__max_depth': [3, 5, 8, 13], 'tree_regressor__min_child_weight': [0.01, 0.5, 1, 10]}, scoring='neg_root_mean_squared_error')
Pipeline(steps=[('tree_preprocessor', ColumnTransformer(remainder='passthrough', transformers=[('cat', Pipeline(steps=[('one_hot', OneHotEncoder())]), ['season', 'mnth', 'holiday', 'weekday', 'workingday', 'weathersit'])]))])
ColumnTransformer(remainder='passthrough', transformers=[('cat', Pipeline(steps=[('one_hot', OneHotEncoder())]), ['season', 'mnth', 'holiday', 'weekday', 'workingday', 'weathersit'])])
['season', 'mnth', 'holiday', 'weekday', 'workingday', 'weathersit']
OneHotEncoder()
passthrough
XGBRegressor(base_score=None, booster=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, enable_categorical=False, gamma=None, gpu_id=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_delta_step=None, max_depth=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=100, n_jobs=None, num_parallel_tree=None, predictor=None, random_state=None, reg_alpha=None, reg_lambda=None, scale_pos_weight=None, subsample=None, tree_method=None, validate_parameters=None, verbosity=None)