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Oriented cobordant classes

I If M is a smooth oriented manifold, then −M will denote the
same manifold with reversed orientation. The symbol + will
denote the disjoint sum (topological sum) of smooth
manifolds.

Def. Two smooth compact oriented n-dimensional manifolds M
and M ′ are said to be oriented cobordant if there exists a
smooth, compact and oriented manifold-with-boundary X
such that ∂X with its induced orientations is diffeomorphic to
M + (−M ′).



Oriented cobordant classes

I If M is a smooth oriented manifold, then −M will denote the
same manifold with reversed orientation. The symbol + will
denote the disjoint sum (topological sum) of smooth
manifolds.

Def. Two smooth compact oriented n-dimensional manifolds M
and M ′ are said to be oriented cobordant if there exists a
smooth, compact and oriented manifold-with-boundary X
such that ∂X with its induced orientations is diffeomorphic to
M + (−M ′).



The oriented cobordism ring Ω∗

I The relation of oriented cobordism is reflexive, symmetric, and
transitive. For example, M + (−M) is diffeomorphic to the
boundary of [0, 1]×M under an orientation preserving
diffeomorphism.

Def. The set Ω∗ consisting of all oriented cobordism classes of
n-dimensional manifolds forms an Abelian group under +.
Furthermore, the cartesian product gives rise to an associative
bilinear product operation Ωn × Ωm −→ Ωn+m.
Thus, the sequence

Ω∗ = (Ω0,Ω1,Ω2, · · · )

of oriented cobordism groups has a structure of a
commutative graded ring.
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Examples

I Ω0
∼= Z. A compact oriented 0-manifold is just a set of signed

points and the sum of the signs is a cobordism invariant.

I Ω1 = 0.

I Ω4
∼= Z. Is in fact generated by CP2.

I Ω8
∼= Z⊕ Z. Is generated by CP4 and CP2 × CP2.

Theorem (Thom)

The tensor product Ω∗ ⊗Q is a polynomial algebra over Q with
independent generators CP2,CP4,CP6, · · ·
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Definition of the signature

I Let us consider an oriented, compact smooth manifold
without boundary M of dimension 4k . The cup product in
cohomology at level 2k defines a symmetric quadratic form

H2k(M;Q)⊗ H2k(M;Q)
∪ // H4k(M;Q)

µM // Q

I By Poincaré duality this is a non-degenerate quadratic form.
We define the signature σ(M) to be the signature of this
quadratic form. This means that if a1, · · · , ar is a basis for
H2k(M;Q) so that the symmetric matrix

[〈ai ∪ aj , µM〉]ij

is diagonal, then σM is equal to the number of positive
diagonal entries minus the number of negative ones.
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Remarks

I Via the de Rham theorem we can could define the signature
via differential forms.

H2k(M;Q)⊗ H2k(M;Q)
∧ // H4k(M;Q)

∫
M // Q

Example Let us consider the complex projective space CP2k . Its
cohomology ring is

H•(CP2k ;Q) ∼= Q[a]/a2k+1

In particular H2k(CP2k ;Q) is generated by a single element
ak with

〈ak ∪ ak , µCP2k 〉 = 1

Hence σ(CP2k) = 1.
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The signature as a ring homomorphism

Theorem (Thom)

The signature satisfies

I σ(M + M ′) = σ(M) + σ(M ′)

I σ(M ×M ′) = σ(M)σ(M ′)

I If M is an oriented boundary, then σ(M) = 0

I σ(CP2k) = 1

Thus, σ : Ω∗ −→ Z is the unique ring homomorphism taking the
value 1 on each CP2k .



Multiplicative Sequences

I Let Q[[x ]]∗ be the multiplicative group of formal power series
with rational coefficients and constant term 1. Fix an element
f (x) ∈ Q[[x ]]∗ and for each n ∈ N consider the formal power
series in n variables given by f (x1)f (x2) · · · f (xn).

I Since this expression in symmetric in the xj ’s, it has an
expansion of the form

f (x1)f (x2) · · · f (xn) = 1 + F1(σ1) + F2(σ1, σ2) + · · ·

where each σk is the elementary symmetric polynomial of
degree k and each Fk is weighted homogeneous of degree k ,
i.e.,

Fk(tσ1, · · · , tkσk) = tkFk(σ1, · · · , σk)
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Multiplicative Sequences

Def. The sequence of polynomials {Fk(σ1, · · · , σk)}∞k=1 is called
the multiplicative sequence determined by f (x).

I For example, if f (x) = (1 + x), then Fk = σk .

Let B be a Z-graded commutative algebra B = B0 ⊕ B1 ⊕ · · · and
let B∗ be the multiplicative group consisting of the elements of the
form b = 1 + b1 + b2 + · · · , such that bk ∈ Bk .

Theorem
Fix a multiplicative sequence {Fk(σ1, · · · , σk)}∞k=1 and let B∗ as
above. Define a map F : B∗ −→ B∗ by

F(b) = 1 + F1(b1) + F2(b1, b2) + · · ·

Then F is a group homomorphism, i.e.,

F(bc) = F(b)F(c)
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Pontrjagin genus

Def. To each smooth manifold M we associate the total F-class (or
Pontrjagin genus)

F(M) = F(p(TM))

where p(TM) ∈ H•(M;Z) is the total Pontrjagin class of TM.

Thm. If M is compact oriented and of dimension n with
fundamental class µM , the map

F (M) = 〈F(M), µM〉

defines a ring homomorphism

F : Ω∗ −→ Q
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The signature Theorem

Theorem (Hirzebruch)

Let M be a compact, closed and oriented smooth manifold of
dimension 4k. Then

σ(M) = L(M)

where L(M) is the Pontrjagin genus associated to the holomorphic
function

`(x) =
√

x/ tanh
√

x = 1 +
1

3
x − 1

45
x2 + · · ·

For example, the first terms are

I L1 = 1
3p1

I L2 = 1
45(7p2 − p2

1)
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Sketch of the proof of the signature theorem

I Since the correspondences M 7→ σ(M) and M 7→ L(M) both
give rise to ring homomorphisms Ω∗ ⊗Q→ Q, it suffices to
verify the theorem for the generators of the algebra Ω∗ ⊗Q,
which we know that are the spaces CP2k .

I We already know that σ(CP2k) = 1.

I The Pontrjagin class of CP2k is (1 + a2)(2k+1).

I We know that L(1 + a2) =
√

a2/ tanh
√

a2, therefore

L(M) = (a/ tanh a)2k+1

I Hence, L(M) is just the coefficient of a2k in this power series.
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Sketch of the proof of the signature theorem

I If we go to complex variable a 7→ z , the coefficient c2k of z2k

in the Taylor expansion (z/ tanh z)2k+1 can be computed as

c2k =

∮
S1

1

2πiz2k+1

( z

tanh z

)2k+1
dz

I Make a substitution u = tanh z so that

dz =
du

1− u2
= (1 + u2 + u4 + · · · )du

I Therefore

c2k =
1

2πi

∮
(1 + u2 + u4 + · · · )

u2k+1
du = 1
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