The Signature Theorem

Juan Camilo Orduz

Villa de Leya Summer School: Geometric, Algebraic and Topological Methods for Quantum Field Theory

July 11, 2013

Oriented cobordism ring

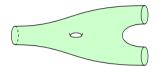
The signature and the L genus

Oriented cobordant classes

If M is a smooth oriented manifold, then -M will denote the same manifold with reversed orientation. The symbol + will denote the disjoint sum (topological sum) of smooth manifolds.

Oriented cobordant classes

- If M is a smooth oriented manifold, then -M will denote the same manifold with reversed orientation. The symbol + will denote the disjoint sum (topological sum) of smooth manifolds.
- Def. Two smooth compact oriented *n*-dimensional manifolds M and M' are said to be **oriented cobordant** if there exists a smooth, compact and oriented manifold-with-boundary X such that ∂X with its induced orientations is diffeomorphic to M + (-M').



The oriented cobordism ring Ω_\ast

► The relation of oriented cobordism is reflexive, symmetric, and transitive. For example, M + (-M) is diffeomorphic to the boundary of [0, 1] × M under an orientation preserving diffeomorphism.

The oriented cobordism ring Ω_\ast

- ▶ The relation of oriented cobordism is reflexive, symmetric, and transitive. For example, M + (-M) is diffeomorphic to the boundary of $[0,1] \times M$ under an orientation preserving diffeomorphism.
- Def. The set Ω_* consisting of all oriented cobordism classes of *n*-dimensional manifolds forms an Abelian group under +. Furthermore, the cartesian product gives rise to an associative bilinear product operation $\Omega_n \times \Omega_m \longrightarrow \Omega_{n+m}$. Thus, the sequence

$$\Omega_* = (\Omega_0, \Omega_1, \Omega_2, \cdots)$$

of oriented cobordism groups has a structure of a commutative graded ring.

• $\Omega_0 \cong \mathbb{Z}$. A compact oriented 0-manifold is just a set of signed points and the sum of the signs is a cobordism invariant.

• $\Omega_0 \cong \mathbb{Z}$. A compact oriented 0-manifold is just a set of signed points and the sum of the signs is a cobordism invariant.

 $\blacktriangleright \ \Omega_1 = 0.$

- ► Ω₀ ≃ Z. A compact oriented 0-manifold is just a set of signed points and the sum of the signs is a cobordism invariant.
- Ω₁ = 0.
- $\Omega_4 \cong \mathbb{Z}$. Is in fact generated by $\mathbb{C}P^2$.
- $\Omega_8 \cong \mathbb{Z} \oplus \mathbb{Z}$. Is generated by $\mathbb{C}P^4$ and $\mathbb{C}P^2 \times \mathbb{C}P^2$.

- $\Omega_0 \cong \mathbb{Z}$. A compact oriented 0-manifold is just a set of signed points and the sum of the signs is a cobordism invariant.
- Ω₁ = 0.
- $\Omega_4 \cong \mathbb{Z}$. Is in fact generated by $\mathbb{C}P^2$.
- $\Omega_8 \cong \mathbb{Z} \oplus \mathbb{Z}$. Is generated by $\mathbb{C}P^4$ and $\mathbb{C}P^2 \times \mathbb{C}P^2$.

Theorem (Thom)

The tensor product $\Omega_* \otimes \mathbb{Q}$ is a polynomial algebra over \mathbb{Q} with independent generators $\mathbb{C}P^2, \mathbb{C}P^4, \mathbb{C}P^6, \cdots$

Definition of the signature

Let us consider an oriented, compact smooth manifold without boundary *M* of dimension 4k. The cup product in cohomology at level 2k defines a symmetric quadratic form

 $H^{2k}(M;\mathbb{Q})\otimes H^{2k}(M;\mathbb{Q}) \xrightarrow{\cup} H^{4k}(M;\mathbb{Q}) \xrightarrow{\mu_M} \mathbb{Q}$

Definition of the signature

Let us consider an oriented, compact smooth manifold without boundary *M* of dimension 4k. The cup product in cohomology at level 2k defines a symmetric quadratic form

$$H^{2k}(M;\mathbb{Q})\otimes H^{2k}(M;\mathbb{Q}) \xrightarrow{\cup} H^{4k}(M;\mathbb{Q}) \xrightarrow{\mu_M} \mathbb{Q}$$

By Poincaré duality this is a non-degenerate quadratic form. We define the **signature** σ(M) to be the signature of this quadratic form. This means that if a₁, · · · , a_r is a basis for H^{2k}(M; Q) so that the symmetric matrix

$$[\langle a_i \cup a_j, \mu_M \rangle]_{ij}$$

is diagonal, then σ_M is equal to the number of positive diagonal entries minus the number of negative ones.

Remarks

Via the de Rham theorem we can could define the signature via differential forms.

$$H^{2k}(M;\mathbb{Q})\otimes H^{2k}(M;\mathbb{Q}) \xrightarrow{\wedge} H^{4k}(M;\mathbb{Q}) \xrightarrow{\int_M} \mathbb{Q}$$

Remarks

Via the de Rham theorem we can could define the signature via differential forms.

$$H^{2k}(M;\mathbb{Q})\otimes H^{2k}(M;\mathbb{Q}) \xrightarrow{\wedge} H^{4k}(M;\mathbb{Q}) \xrightarrow{\int_M} \mathbb{Q}$$

Example Let us consider the complex projective space $\mathbb{C}P^{2k}$. Its cohomology ring is

$$H^{\bullet}(\mathbb{C}P^{2k};\mathbb{Q})\cong\mathbb{Q}[a]/a^{2k+1}$$

In particular $H^{2k}(\mathbb{C}P^{2k};\mathbb{Q})$ is generated by a single element a^k with

$$\langle \mathbf{a}^k \cup \mathbf{a}^k, \mu_{\mathbb{C}P^{2k}} \rangle = 1$$

Hence $\sigma(\mathbb{C}P^{2k}) = 1$.

The signature as a ring homomorphism

Theorem (Thom)

The signature satisfies

•
$$\sigma(M + M') = \sigma(M) + \sigma(M')$$

•
$$\sigma(M \times M') = \sigma(M)\sigma(M')$$

- If M is an oriented boundary, then $\sigma(M) = 0$
- $\sigma(\mathbb{C}P^{2k}) = 1$

Thus, $\sigma : \Omega_* \longrightarrow \mathbb{Z}$ is the unique ring homomorphism taking the value 1 on each $\mathbb{C}P^{2k}$.

Let Q[[x]]* be the multiplicative group of formal power series with rational coefficients and constant term 1. Fix an element f(x) ∈ Q[[x]]* and for each n ∈ N consider the formal power series in n variables given by f(x₁)f(x₂) · · · f(x_n).

- Let Q[[x]]* be the multiplicative group of formal power series with rational coefficients and constant term 1. Fix an element f(x) ∈ Q[[x]]* and for each n ∈ N consider the formal power series in n variables given by f(x₁)f(x₂) · · · f(x_n).
- Since this expression in symmetric in the x_j's, it has an expansion of the form

$$f(x_1)f(x_2)\cdots f(x_n) = 1 + F_1(\sigma_1) + F_2(\sigma_1, \sigma_2) + \cdots$$

where each σ_k is the elementary symmetric polynomial of degree k and each F_k is weighted homogeneous of degree k, i.e.,

$$F_k(t\sigma_1,\cdots,t^k\sigma_k)=t^kF_k(\sigma_1,\cdots,\sigma_k)$$

Def. The sequence of polynomials $\{F_k(\sigma_1, \dots, \sigma_k)\}_{k=1}^{\infty}$ is called the **multiplicative sequence** determined by f(x).

- Def. The sequence of polynomials $\{F_k(\sigma_1, \cdots, \sigma_k)\}_{k=1}^{\infty}$ is called the **multiplicative sequence** determined by f(x).
 - For example, if f(x) = (1 + x), then $F_k = \sigma_k$.

Def. The sequence of polynomials $\{F_k(\sigma_1, \dots, \sigma_k)\}_{k=1}^{\infty}$ is called the **multiplicative sequence** determined by f(x).

• For example, if f(x) = (1 + x), then $F_k = \sigma_k$.

Let *B* be a \mathbb{Z} -graded commutative algebra $B = B_0 \oplus B_1 \oplus \cdots$ and let B^* be the multiplicative group consisting of the elements of the form $b = 1 + b_1 + b_2 + \cdots$, such that $b_k \in B_k$.

Theorem

Fix a multiplicative sequence $\{F_k(\sigma_1, \cdots, \sigma_k)\}_{k=1}^{\infty}$ and let B^* as above. Define a map $\mathbf{F} : B^* \longrightarrow B^*$ by

$$\mathbf{F}(b) = 1 + F_1(b_1) + F_2(b_1, b_2) + \cdots$$

Then F is a group homomorphism, i.e.,

$$\mathbf{F}(bc) = \mathbf{F}(b)\mathbf{F}(c)$$

(日)

Pontrjagin genus

Def. To each smooth manifold M we associate the total **F**-class (or Pontrjagin genus)

$$\mathbf{F}(M) = \mathbf{F}(p(TM))$$

where $p(TM) \in H^{\bullet}(M; \mathbb{Z})$ is the total Pontrjagin class of TM.

Pontrjagin genus

Def. To each smooth manifold M we associate the total **F**-class (or Pontrjagin genus)

$$\mathbf{F}(M) = \mathbf{F}(p(TM))$$

where $p(TM) \in H^{\bullet}(M; \mathbb{Z})$ is the total Pontrjagin class of TM.

Thm. If M is compact oriented and of dimension n with fundamental class μ_M , the map

$$F(M) = \langle \mathbf{F}(M), \mu_M \rangle$$

defines a ring homomorphism

$$F: \Omega_* \longrightarrow \mathbb{Q}$$

The signature Theorem

Theorem (Hirzebruch)

Let M be a compact, closed and oriented smooth manifold of dimension 4k. Then

$$\sigma(M)=L(M)$$

where L(M) is the Pontrjagin genus associated to the holomorphic function

$$\ell(x) = \sqrt{x} / \tanh \sqrt{x} = 1 + \frac{1}{3}x - \frac{1}{45}x^2 + \cdots$$

The signature Theorem

Theorem (Hirzebruch)

Let M be a compact, closed and oriented smooth manifold of dimension 4k. Then

$$\sigma(M)=L(M)$$

where L(M) is the Pontrjagin genus associated to the holomorphic function

$$\ell(x) = \sqrt{x} / \tanh \sqrt{x} = 1 + \frac{1}{3}x - \frac{1}{45}x^2 + \cdots$$

For example, the first terms are

•
$$L_1 = \frac{1}{3}p_1$$

• $L_2 = \frac{1}{45}(7p_2 - p_1^2)$

Since the correspondences M → σ(M) and M → L(M) both give rise to ring homomorphisms Ω_{*} ⊗ Q → Q, it suffices to verify the theorem for the generators of the algebra Ω_{*} ⊗ Q, which we know that are the spaces CP^{2k}.

- Since the correspondences M → σ(M) and M → L(M) both give rise to ring homomorphisms Ω_{*} ⊗ Q → Q, it suffices to verify the theorem for the generators of the algebra Ω_{*} ⊗ Q, which we know that are the spaces CP^{2k}.
- We already know that $\sigma(\mathbb{C}P^{2k}) = 1$.

- Since the correspondences M → σ(M) and M → L(M) both give rise to ring homomorphisms Ω_{*} ⊗ Q → Q, it suffices to verify the theorem for the generators of the algebra Ω_{*} ⊗ Q, which we know that are the spaces CP^{2k}.
- We already know that $\sigma(\mathbb{C}P^{2k}) = 1$.
- The Pontrjagin class of $\mathbb{C}P^{2k}$ is $(1+a^2)^{(2k+1)}$.

- Since the correspondences M → σ(M) and M → L(M) both give rise to ring homomorphisms Ω_{*} ⊗ Q → Q, it suffices to verify the theorem for the generators of the algebra Ω_{*} ⊗ Q, which we know that are the spaces CP^{2k}.
- We already know that $\sigma(\mathbb{C}P^{2k}) = 1$.
- The Pontrjagin class of $\mathbb{C}P^{2k}$ is $(1+a^2)^{(2k+1)}$.
- We know that $L(1 + a^2) = \sqrt{a^2} / \tanh \sqrt{a^2}$, therefore

$$\mathbf{L}(M) = (a/\tanh a)^{2k+1}$$

- Since the correspondences M → σ(M) and M → L(M) both give rise to ring homomorphisms Ω_{*} ⊗ Q → Q, it suffices to verify the theorem for the generators of the algebra Ω_{*} ⊗ Q, which we know that are the spaces CP^{2k}.
- We already know that $\sigma(\mathbb{C}P^{2k}) = 1$.
- The Pontrjagin class of $\mathbb{C}P^{2k}$ is $(1+a^2)^{(2k+1)}$.
- We know that $L(1 + a^2) = \sqrt{a^2} / \tanh \sqrt{a^2}$, therefore

$$\mathbf{L}(M) = (a/\tanh a)^{2k+1}$$

• Hence, L(M) is just the coefficient of a^{2k} in this power series.

If we go to complex variable a → z, the coefficient c_{2k} of z^{2k} in the Taylor expansion (z/tanh z)^{2k+1} can be computed as

$$c_{2k} = \oint_{S^1} \frac{1}{2\pi i z^{2k+1}} \left(\frac{z}{\tanh z}\right)^{2k+1} dz$$

If we go to complex variable a → z, the coefficient c_{2k} of z^{2k} in the Taylor expansion (z/tanh z)^{2k+1} can be computed as

$$c_{2k} = \oint_{S^1} \frac{1}{2\pi i z^{2k+1}} \left(\frac{z}{\tanh z}\right)^{2k+1} dz$$

Make a substitution u = tanh z so that

$$dz = \frac{du}{1-u^2} = (1+u^2+u^4+\cdots)du$$

If we go to complex variable a → z, the coefficient c_{2k} of z^{2k} in the Taylor expansion (z/tanh z)^{2k+1} can be computed as

$$c_{2k} = \oint_{S^1} \frac{1}{2\pi i z^{2k+1}} \left(\frac{z}{\tanh z}\right)^{2k+1} dz$$

Make a substitution u = tanh z so that

$$dz = \frac{du}{1-u^2} = (1+u^2+u^4+\cdots)du$$

Therefore

$$c_{2k} = \frac{1}{2\pi i} \oint \frac{(1 + u^2 + u^4 + \cdots)}{u^{2k+1}} du = 1$$