
Exploring Tools for Interpretable Machine
Learning

Dr. Juan Orduz

PyData Global 2021



Outline

Introduction

Data Set ([7])

Models Fit ([9])

Model Explainability ([7], [5])
Model Specific

Beta Coefficients and Weight Effects
Tree ensembles

Model Agnostic
PDP and ICE Plots
Permutation Importance
SHAP

References



Introduction
Aim and Scope of the Talk

We want to test explore various techniques to get a better
understanding on how machine learning (ML) models generate
predictions and how features interact with each other.

Important!
I Domain knowledge on the problem.
I Understanding on the input data.
I Understanding the logic behind the ML algorithms.

How? We are going to work out a concrete example.

References
This talk is based on my blog post ([9]), which itself is based on these
two amazing references:
I Interpretable Machine Learning, A Guide for Making Black Box

Models Explainable by Christoph Molnar ([7])
I Interpretable Machine Learning with Python by Serg Masís ([5])

Remark: Interpretable ML 6= Causality (see [2], [3], [6] and [8])

https://juanitorduz.github.io/interpretable_ml/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://github.com/PacktPublishing/Interpretable-Machine-Learning-with-Python
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Continuous Regressors



Categorical Regressors



Train-Test Split



Models
Two model flavours

Figure 1: Linear model Lasso + second order polynomial interactions ([10]).

Figure 2: Tree based model XGBoost regression model ([1]).



Out of sample performance - Errors Distribution



Out of sample performance - Predictions



β coefficients
See [7, Section 5.1]

y = β0 + β1x1 + · · ·+ βpxp + ε, where ε ∼ N(0, σ2)



Weight Effects βixi

Figure 3: For each data instance i and each feature xk we compute the
product βk x (i)

k to get the weight effect.



Weight Effects Importance wk = 1
n

∑n
i=1 |βkx (i)

k |



Weight Effects: Temperature (z-transform)

Figure 4: This plot just shows the effect of the linear term temp and not the
interactions.



Weight Effects: Interactions

Figure 5: We can visualize the interaction between temp and hum by
computing the total weight effect βtempxtemp + βhumxhum + βtemp×humxtempxhum.



Explaining Individual Predictions
Let us see weight effects of the linear model for data observation 284

Figure 6: Left: All weight effects. Right: Weight effects of the linear terms.



Feature Importance Metrics: XGBoost ([1])

I Gain: improvement in
accuracy brought by a
feature to the branches
it is on.

I Cover: measures the
relative quantity of
observations
concerned by a
feature.

I Frequency / Weight:
just counts the number
of times a feature is
used in all generated
trees.



Partial Dependence Plot (PDP) & Individual
Conditional Expectation (ICE) ([7, Section 8.1 & 9.1])

I The partial dependence plot shows the marginal effect one or
two features have on the predicted outcome of a machine
learning model.

I For example, given a trained model f̂ , we compute for temp = 8

f̂temp(temp = 8) =
1

146

(
f̂ (temp = 8,hum = 80, · · · )

+f̂ (temp = 8,hum = 70, · · · ) + · · ·
)

I Individual conditional expectation (ICE) plot shows one line per
instance.

I A PDP is the average of the lines of an ICE plot
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PDP & ICE Examples (1D)

Figure 7: PDP & ICE plots for some numerical variables for the linear and
XGBoost models.



PDP & ICE Examples (2D)



Permutation Importance
See [7, Section 5.1]

Measures the increase in the prediction error of the model after we
permuted the feature’s values, which breaks the relationship between
the feature and the true outcome ([7, Section 8.5]).

Figure 8: The permutation importance for these two models have
days_since_2011 and temp on their top 3 ranking, which partially explain the
trend and seasonality components respectively (see [7, Figure 8.27]).



SHAP Values: Features as teams playing a game
Definition, see [4], and [5, Chapters 5 & 6] and [7, Section 9.6]

For each data instance x (e.g. temp=15, hum=60, windspeed=14)
I Sample coalitions z ′ ∈ {0,1}M , where M is the maximum

coalition size.
I Assume we select temp and hum from {temp, hum,windspeed}.

I Get prediction for each z ′. For features not in the coalition we
replace their values with random samples from the dataset.
I E.g. for a data instance temp = 15 and hum = 60 we compute the

prediction f̂ (temp = 15, hum = 60,windspeed = 11) = 4000.
I Compute the weight for each z ′, with the SHAP kernel,

πx(z ′) =
(M − 1)( M

|z′|
)
|z ′|(M − |z ′|)

I M = 3, |z‘| = 2⇒ π = (3− 1)/(3× 2× (3− 2)) = 1/3.
I Fit weighted linear model and return Shapley values, i.e. the

coefficients from the linear model. In this example
4000 = φ0 +

1
3φtemp + 1

3φhum + ε.
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SHAP Values

Figure 9: SHAP values per data instance. The x position of the dot is
determined by the SHAP value of that feature, and dots "pile up" along each
feature row to show density. Color is used to display the original value of a
feature ([4]).



Mean Abs SHAP Values



SHAP Values: Temperature

Figure 10: This figure shows the SHAP values as a function of temperature.
Compare with Figure 7



SHAP Values: Observation 284

Figure 11: This waterfall plot shows how the SHAP values of each feature
move the model output from our prior expectation under the background data
distribution, to the final model prediction given the evidence of all the features
([4]). Compare with Figure 6.
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Thank You!
Contact
I ÷ https://juanitorduz.github.io
I � github.com/juanitorduz
I 7 juanitorduz
I R juanitorduz@gmail.com

https://juanitorduz.github.io
https://github.com/juanitorduz
https://twitter.com/juanitorduz
mailto:juanitorduz@gmail.com
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