On Laplacian Eigenmaps for Dimensionality Reduction

Dr. Juan Orduz

PyData Berlin 2018
Overview

Introduction

Warming Up
 The Spectral Theorem

Motivation
 Toy Model Example

The Algorithm
 Description
 Justification

Examples: Scikit-Learn

Spectral Geometry*
 The Laplacian
 The Heat Kernel
Can One Hear the Shape of a Drum?

[Kac66]

A **differentiable manifold** is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. A (Riemannian) metric g allow us to measure distances.

![Diagram](U \subset \mathbb{R}^n)
A differentiable manifold is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. A (Riemannian) metric g allow us to measure distances. We can consider the Laplacian $L : C^\infty(M) \to C^\infty(M)$ and its spectrum $\text{spec}(L) = \{\lambda_0, \lambda_1, \cdots, \lambda_k, \cdots \to \infty\}$.
A differentiable manifold is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. A (Riemannian) metric g allow us to measure distances.

We can consider the Laplacian $L : C^\infty(M) \rightarrow C^\infty(M)$ and its spectrum $\text{spec}(L) = \{\lambda_0, \lambda_1, \cdots, \lambda_k, \cdots \rightarrow \infty\}$.

- If we are given $\text{spec}(L)$ we can infer the dimension of M, its volume and its total scalar curvature.
Spectral Geometry for Dimensionality Reduction?

Let us assume we have data points \(x_1, \ldots, x_k \in \mathbb{R}^N \) which lie on an unknown submanifold \(M \subset \mathbb{R}^N \).

Key Observation

- Eigenfunctions of \(L \) on \(M \) can be used to define lower dimensional embeddings.

Idea ([BN03])

- Model \(M \) by constructing a graph \(G = (V, E) \) where close data points are connected by edges.
Spectral Geometry for Dimensionality Reduction?

Let us assume we have data points $x_1, \cdots, x_k \in \mathbb{R}^N$ which lie on an unknown submanifold $M \subset \mathbb{R}^N$.

Key Observation

- Eigenfunctions of L on M can be used to define lower dimensional embeddings.

Idea ([BN03])

- Model M by constructing a graph $G = (V, E)$ where close data points are connected by edges.
- Construct the graph Laplacian L on G.
Spectral Geometry for Dimensionality Reduction?

Let us assume we have data points $x_1, \ldots, x_k \in \mathbb{R}^N$ which lie on an unknown submanifold $M \subset \mathbb{R}^N$.

Key Observation

- Eigenfunctions of L on M can be used to define lower dimensional embeddings.

Idea ([BN03])

- Model M by constructing a graph $G = (V, E)$ where close data points are connected by edges.
- Construct the graph Laplacian L on G.
- Compute $\text{spec}(L)$ and the corresponding eigenfunctions.
Spectral Geometry for Dimensionality Reduction?

Let us assume we have data points $x_1, \cdots, x_k \in \mathbb{R}^N$ which lie on an unknown submanifold $M \subset \mathbb{R}^N$.

Key Observation

- Eigenfunctions of L on M can be used to define lower dimensional embeddings.

Idea ([BN03])

- Model M by constructing a graph $G = (V, E)$ where close data points are connected by edges.
- Construct the graph Laplacian L on G.
- Compute $\text{spec}(L)$ and the corresponding eigenfunctions.
- Use these eigenfunctions to construct an embedding $F : V \rightarrow \mathbb{R}^m$ for $m < N$.
The Spectral Theorem

Let $A \in M_{n \times n}(\mathbb{R})$ be a symmetric matrix, i.e. $A = A^\dagger$.

Recall $\lambda \in \mathbb{C}$ is an eigenvalue for A with eigenvector $f \in \mathbb{R}^n$, $f \neq 0$, if $Af = \lambda f$.

A set of vectors $B = \{f_1, f_2, \cdots, f_n\}$ is a basis for \mathbb{R}^n if:

- They are linearly independent.
- They generate \mathbb{R}^n.

B is said to be an orthonormal basis if $\langle f_i, f_j \rangle = \delta_{ij}$.

Spectral Theorem

There exists an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A. Each eigenvalue is real.
The Spectral Theorem

Let $A \in M_{n \times n}(\mathbb{R})$ be a symmetric matrix, i.e. $A = A^\dagger$.

Recall

- $\lambda \in \mathbb{C}$ is an eigenvalue for A with eigenvector $f \in \mathbb{R}^n$, $f \neq 0$, if
 \[Af = \lambda f. \]

- A set of vectors $B = \{f_1, f_2, \cdots, f_n\}$ is a basis for \mathbb{R}^n if:
 - They are linearly independent.
 - They generate \mathbb{R}^n.

- B is said to be an orthonormal basis if $\langle f_i, f_j \rangle = \delta_{ij}$.
The Spectral Theorem

Let \(A \in M_{n \times n}(\mathbb{R}) \) be a symmetric matrix, i.e. \(A = A^\dagger \).

Recall

- \(\lambda \in \mathbb{C} \) is an **eigenvalue** for \(A \) with **eigenvector** \(f \in \mathbb{R}^n \), \(f \neq 0 \), if
 \[
 Af = \lambda f.
 \]

- A set of vectors \(B = \{ f_1, f_2, \cdots, f_n \} \) is a **basis** for \(\mathbb{R}^n \) if:
 - They are linearly independent.
 - They generate \(\mathbb{R}^n \).

- \(B \) is said to be an **orthonormal** basis if \(\langle f_i, f_j \rangle = \delta_{ij} \).

Spectral Theorem

There exists an orthonormal basis of \(\mathbb{R}^n \) consisting of eigenvectors of \(A \). Each eigenvalue is real.
Min(Max)imizing Properties of Eigenvalues

Let \(A \in M_n(\mathbb{R}) \) be a symmetric matrix with spectral decomposition \(\lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_n \).

For later purposes, we would like to find

\[
\arg \max \langle Af, f \rangle.
\]

\[
||f|| = 1
\]
Min(Max)imizing Properties of Eigenvalues

Let $A \in M_n(\mathbb{R})$ be a symmetric matrix with spectral decomposition $\lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_n$.

For later purposes, we would like to find

$$\arg \max_{||f||=1} \langle Af, f \rangle.$$

- Define the associated Lagrange optimization problem
 $$\mathcal{L}(f, \lambda) = \langle Af, f \rangle - \lambda(||f||^2 - 1).$$
Min(Max)imizing Properties of Eigenvalues

Let $A \in M_n(\mathbb{R})$ be a symmetric matrix with spectral decomposition $\lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_n$.

For later purposes, we would like to find

$$\arg \max_{||f||=1} \langle Af, f \rangle.$$

▶ Define the associated Lagrange optimization problem

$$\mathcal{L}(f, \lambda) = \langle Af, f \rangle - \lambda(||f||^2 - 1).$$

▶ Take the derivative with respect to f

$$\frac{\partial}{\partial f} \mathcal{L}(f, \lambda) = 2(Af - \lambda f) \overset{!}{=} 0.$$
Min(Max)imizing Properties of Eigenvalues

Let \(A \in M_n(\mathbb{R}) \) be a symmetric matrix with spectral decomposition \(\lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_n \).

For later purposes, we would like to find

\[
\arg \max_{||f||=1} ||Af, f|| = \langle Af, f \rangle.
\]

Define the associated Lagrange optimization problem

\[
\mathcal{L}(f, \lambda) = \langle Af, f \rangle - \lambda(||f||^2 - 1).
\]

Take the derivative with respect to \(f \)

\[
\frac{\partial}{\partial f} \mathcal{L}(f, \lambda) = 2(Af - \lambda f) = 0.
\]

Hence,

\[
\arg \max_{||f||=1} \langle Af, f \rangle = f_n \quad \text{and} \quad \arg \min_{||f||=1} \langle Af, f \rangle = f_0.
\]
Consider the problem of mapping these points to a line so that close points stay as together as possible.
Step 1: From Data to Adjacency Graph

- Define a distance function: first nearest neighbour.
Step 1: From Data to Adjacency Graph

- Define a distance function: first nearest neighbour.
- For each node, attach an edge for close points.
Step 1: From Data to Adjacency Graph

- Define a distance function: first nearest neighbour.
- For each node, attach an edge for close points.
Step 1: From Data to Adjacency Graph

- Define a distance function: first nearest neighbour.
- For each node, attach an edge for close points.
Step 1: From Data to Adjacency Graph

▶ Define a distance function: first nearest neighbour.
▶ For each node, attach an edge for close points.
Step 2: Construct the Adjacency and Degree Matrices

\[W = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix} \quad D = \begin{pmatrix}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \]
Step 3: Spectrum of the Graph Laplacian

- Construct the operator L defined by

$$L := D - W = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

- Consider the generalized eigenvalue problem

$$Lf = \lambda Df.$$

Equivalently, $D^{-1}Lf = \lambda f$.

Eigenvalues:

$\lambda_0 = 0$, $\lambda_1 = 1$, $\lambda_2 = 1$, $\lambda_3 = 2$.

An eigenvector for $\lambda_1 = 1$ is $y := f_1 = (0, -3, 1, 2)$.

The vector $y : V \rightarrow \mathbb{R}$ defines an embedding.
Step 3: Spectrum of the Graph Laplacian

- Construct the operator L defined by

$$L := D - W = \begin{pmatrix}
3 & -1 & -1 & -1 \\
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{pmatrix}$$

- Consider the generalized eigenvalue problem

$$Lf = \lambda Df.$$

Equivalently, $D^{-1}Lf = \lambda f$.

- Eigenvalues: $\lambda_0 = 0, \lambda_1 = 1, \lambda_2 = 1, \lambda_3 = 2$.

- An eigenvector for $\lambda_1 = 1$ is $y := f_1 = (0, -3, 1, 2)$.

- The vector $y : V \rightarrow \mathbb{R}$ defines an embedding.
Step 3: Spectrum of the Graph Laplacian

Construct the operator L defined by

$$L := D - W = \begin{pmatrix}
3 & -1 & -1 & -1 \\
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{pmatrix}$$

Consider the generalized eigenvalue problem

$$Lf = \lambda D f.$$

Equivalently, $D^{-1} L f = \lambda f$.

Eigenvalues: $\lambda_0 = 0$, $\lambda_1 = 1$, $\lambda_2 = 1$, $\lambda_3 = 2$.

An eigenvector for $\lambda_1 = 1$ is $y := f_1 = (0, -3, 1, 2)$.
Step 3: Spectrum of the Graph Laplacian

- Construct the operator L defined by

$$L := D - W = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

- Consider the generalized eigenvalue problem

$$Lf = \lambda Df.$$

Equivalently, $D^{-1}Lf = \lambda f$.

- Eigenvalues: $\lambda_0 = 0$, $\lambda_1 = 1$, $\lambda_2 = 1$, $\lambda_3 = 2$.

- An eigenvector for $\lambda_1 = 1$ is $y := f_1 = (0, -3, 1, 2)$.

- The vector $y : V \rightarrow \mathbb{R}$ defines and embedding.
The Algorithm

Let $x_1, \ldots, x_k \in \mathbb{R}^N$.

1. **Construct a weighted graph** $G = (V, E)$ with k nodes, one for each point, and a set of edges connecting neighbouring points. **Select a distance function:**
 - (Euclidean Distance) Let $\epsilon > 0$. We connect an edge between i and j if $||x_i - x_j||^2 < \epsilon$.
 - n nearest neighbours.
The Algorithm

Let \(x_1, \cdots, x_k \in \mathbb{R}^N \).

1. **Construct a weighted graph** \(G = (V, E) \) with \(k \) nodes, one for each point, and a set of edges connecting neighbouring points. **Select a distance function:**
 - (Euclidean Distance) Let \(\varepsilon > 0 \). We connect an edge between \(i \) and \(j \) if \(||x_i - x_j||^2 < \varepsilon \).
 - \(n \) nearest neighbours.

2. **Choose Weights.** If nodes \(i \) and \(j \) are connected, put
 - \(W_{ij} = 1 \).
 - (Heat Kernel) \(W_{ij} := e^{-\frac{||x_i - x_j||^2}{t}} \) for some \(t > 0 \).
The Algorithm
Let $x_1, \cdots, x_k \in \mathbb{R}^N$.

1. **Construct a weighted graph** $G = (V, E)$ with k nodes, one for each point, and a set of edges connecting neighbouring points. **Select a distance function:**
 - (Euclidean Distance) Let $\varepsilon > 0$. We connect and edge between i and j if $||x_i - x_j||^2 < \varepsilon$.
 - n nearest neighbours.

2. **Choose Weights.** If nodes i and j are connected, put
 - $W_{ij} = 1$.
 - (Heat Kernel) $W_{ij} := e^{-\frac{||x_i - x_j||^2}{t}}$ for some $t > 0$.

3. Assume G is connected. **Compute the eigenvalues** of the generalized eigenvector problem $Lf = \lambda Df$, where
 - D is the diagonal weight matrix, $D_{ii} = \sum_{j=1}^{k} W_{ij}$.
 - $L := D - W$ is the graph Laplacian.
The Algorithm

Let \(x_1, \cdots, x_k \in \mathbb{R}^N \).

1. **Construct a weighted graph** \(G = (V, E) \) with \(k \) nodes, one for each point, and a set of edges connecting neighbouring points. **Select a distance function:**
 - (Euclidean Distance) Let \(\varepsilon > 0 \). We connect an edge between \(i \) and \(j \) if \(||x_i - x_j||^2 < \varepsilon \).
 - \(n \) nearest neighbours.

2. **Choose Weights.** If nodes \(i \) and \(j \) are connected, put
 - \(W_{ij} = 1 \).
 - (Heat Kernel) \(W_{ij} := e^{-\frac{||x_i - x_j||^2}{t}} \) for some \(t > 0 \).

3. Assume \(G \) is connected. **Compute the eigenvalues** of the generalized eigenvector problem \(Lf = \lambda Df \), where
 - \(D \) is the diagonal weight matrix, \(D_{ii} = \sum_{j=1}^{k} W_{ij} \).
 - \(L := D - W \) is the graph Laplacian.

4. **Construct Embedding.** Let \(f_0, f_1, \cdots, f_{k-1} \) be the corresponding eigenvectors ordered according to their eigenvalues \((\lambda_0 = 0)\). For \(m < N \), set
 \[
 F(i) := (f_1(i), \cdots, f_m(i)).
 \]
Why does it work?

$m = 1$

Assume you have constructed the weighted graph $G = (V, E)$. We want to construct an embedding $F : V \rightarrow \mathbb{R}$.

Hint: Minimize

$$J(y) := \sum_{i,j=1}^{k} (y_i - y_j)^2 W_{ij} = 2 y^\dagger Ly.$$
Why does it work?

\(m = 1 \)

Assume you have constructed the weighted graph \(G = (V, E) \). We want to construct an embedding \(F : V \rightarrow \mathbb{R} \).

Hint: Minimize

\[
J(y) := \sum_{i,j=1}^{k} (y_i - y_j)^2 W_{ij} = 2y^\dagger Ly.
\]

Thus, the problem reduces to find

\[
\arg \min y^\dagger Ly = \arg \min \langle Ly, y \rangle
\]

\[
y^\dagger Dy = 1 \quad y^\dagger D1 = 0
\]

\[
y^\dagger Dy = 1 \text{ fixes the scale.}
\]

\[
y^\dagger D1 = 0 \text{ eliminates the trivial solution } y = 1.
\]
Why does it work?

$m = 1$

Assume you have constructed the weighted graph $G = (V, E)$. We want to construct an embedding $F : V \rightarrow \mathbb{R}$.

Hint: Minimize

$$J(y) : = \sum_{i,j=1}^{k} (y_i - y_j)^2 W_{ij} = 2 y^\dagger Ly.$$

Thus, the problem reduces to find

$$\arg \min y^\dagger Ly = \arg \min \langle Ly, y \rangle$$

- $y^\dagger Dy = 1$
- $y^\dagger D1 = 0$

- $y^\dagger Dy = 1$ fixes the scale.
- $y^\dagger D1 = 0$ eliminates the trivial solution $y = 1$.

This translates to finding the minimum non-zero eigenvalue and eigenvector of

$$Ly = \lambda Dy.$$
Why does it work?

$m > 1$ (Vectorize)

Assume you have constructed the weighted graph $G = (V, E)$. We want to construct an embedding $F : V \rightarrow \mathbb{R}^m$.

Hint: Minimize, for $Y = (y_1 \cdots y_m) \in M_{k \times m}(\mathbb{R})$,

$$J(Y) := \sum_{i,j=1}^k \|Y_i - Y_j\|^2 W_{ij} = \text{tr}(Y^\dagger LY).$$

Thus, the problem reduces to find

$$\arg\min \quad \text{tr}(Y^\dagger LY)$$

$$\text{tr}(Y^\dagger DY = I)$$

This translates to finding the minimum non-zero eigenvalues and eigenvectors of

$$Lf = \lambda Dy.$$
Examples: Scikit-Learn

Let us go to a Jupyter notebook to see some examples.
The Laplacian

Second order differential operator $L : C_c^\infty(M) \rightarrow C_c^\infty(M)$.

- For $M = \mathbb{R}^n$,

 $$L = - \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$$

- For (M, g) Riemannian manifold,

 $$L = - \sum_{i=1}^{n} \sum_{j=1}^{n} g^{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \text{lower order terms}.$$
The Laplacian

Second order differential operator \(L : C_c^\infty(M) \rightarrow C_c^\infty(M) \).

- For \(M = \mathbb{R}^n \),
 \[
 L = - \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}
 \]

- For \((M, g)\) Riemannian manifold,
 \[
 L = - \sum_{i=1}^{n} \sum_{j=1}^{n} g^{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \text{lower order terms.}
 \]

Spectral Theorem ([Ros97])

\(L \) is symmetric with respect to the inner product in \(C_c^\infty(M) \),

\[
(f, g)_{L^2} = \int_M f(x) g(x) dx.
\]

If \(M \) is compact, there exists an orthonormal basis of \(L^2(M) \) consisting of eigenvectors of \(L \). Each eigenvalue is real.
Embedding through Eigenmaps

Let \((M, g)\) be a compact Riemannian manifold and \(f : M \to \mathbb{R}\).

- If \(x, z \in M\) are close, then

\[
|f(x) - f(z)| \leq \text{dist}_M(x, z)\|\nabla f\| + o(\text{dist}_M(x, z)).
\]
Embedding through Eigenmaps

Let \((M, g)\) be a compact Riemannian manifold and \(f : M \rightarrow \mathbb{R}\).

* If \(x, z \in M\) are close, then

\[
|f(x) - f(z)| \leq \text{dist}_M(x, z)\|\nabla f\| + o(\text{dist}_M(x, z)).
\]

* We want a map that best preserves locality on average,

\[
\text{arg min} \quad \int_M \|\nabla f\|^2 dx. \quad (1)
\]
Embedding through Eigenmaps

Let \((M, g)\) be a compact Riemannian manifold and \(f : M \rightarrow \mathbb{R}\).

- If \(x, z \in M\) are close, then
 \[
 |f(x) - f(z)| \leq \text{dist}_M(x, z)\|\nabla f\| + o(\text{dist}_M(x, z)).
 \]

- We want a map that best preserves locality on average,
 \[
 \arg \min_{\|f\|_{L^2(M)}=1} \int_M \|\nabla f\|^2 \, dx. \tag{1}
 \]

- By Stokes’ Theorem
 \[
 \int_M \|\nabla f\|^2 \, dx = \int_M (Lf)f \, dx = (Lf, f)_{L^2}.
 \]

- (1) must be an eigenvalue of the Laplacian.
The Graph Laplacian as a Differential Operator

\[\nabla = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix} \quad \Rightarrow \quad \nabla^\dagger \nabla = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix} \]

So we see,

\[L = \nabla^\dagger \nabla. \]
The Heat Kernel

Let $f : M \longrightarrow \mathbb{R}$. Consider the Heat Equation on M,

$$(\partial_t + L) u(x, t) = 0 \quad \text{with initial condition} \quad u(x, 0) = f(x).$$
The Heat Kernel

Let \(f : M \to \mathbb{R} \). Consider the **Heat Equation** on \(M \),

\[
(\partial_t + L) u(x, t) = 0 \quad \text{with initial condition} \quad u(x, 0) = f(x).
\]

▶ The solution is given by ([Ros97])

\[
u(x, t) = \int_M H_t(x, y)f(y)dy,
\]

where the **Heat Kernel** has the form

\[
H_t(x, y) = (4\pi t)^{-\text{dim}(M)/2} e^{-\frac{\text{dist}_M(x, y)^2}{4t}} (\phi(x, y) + O(t)),
\]

for certain \(\phi \) is a smooth function with \(\phi(x, x) = 1 \).
The Heat Kernel

Let \(f : M \to \mathbb{R} \). Consider the Heat Equation on \(M \),
\[(\partial_t + L) u(x, t) = 0 \quad \text{with initial condition} \quad u(x, 0) = f(x).\]

- The solution is given by ([Ros97])
 \[
 u(x, t) = \int_M H_t(x, y) f(y) \, dy,
 \]
 where the Heat Kernel has the form
 \[
 H_t(x, y) = (4\pi t)^{-\dim(M)/2} e^{-\frac{\text{dist}_M(x, y)^2}{4t}} (\phi(x, y) + O(t)),
 \]
 for certain \(\phi \) is a smooth function with \(\phi(x, x) = 1 \).

- It can be shown that, for \(x_1, \cdots, x_k \in M \) and \(t > 0 \) small,
 \[
 Lf(x_i) \approx \frac{1}{t} \left(f(x_i) - \sum_{0 < ||x_i-x_j||^2 < \varepsilon} e^{-\frac{||x_i-x_j||^2}{4t}} f(x_j) \right)
 \sum_{0 < ||x_i-x_j||^2 < \varepsilon} e^{-\frac{||x_i-x_j||^2}{4t}} f(x_j)
 \]
 which justifies \(W_{ij} = e^{-\frac{||x_i-x_j||^2}{4t}} \).
Mikhail Belkin and Partha Niyogi.
Laplacian eigenmaps for dimensionality reduction and data representation.

Mark Kac.
Can one hear the shape of a drum?

Steven Rosenberg.
The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds.