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ABSTRACT. This short notes were a guide for a short communication
given in the Summer School on Geometrical, Algebraic and Topological Meth-
ods on Quantum Field Theory, Villa de Leyva, Colombia, 2011.
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1. SYMPLECTIC GEOMETRY

A good introduction to symplectic geometry is [2] and a very complete
reference on symplectic geometry and classical mechanics is [1].

Definition 1.1. Let M be a smooth manifold and ω ∈ Ω2(M) be a 2-form
on M . Then ω is said to be symplectic if it is closed, i.e. dω = 0, and if it is
non-degenerated.The pair (M,ω) is said to be a symplectic manifold.

Remark 1.1. Let A ∈Mn(R) be a real skew-symmetric square matrix. Then
detA = (−1)n det(A). This argument shows that a symplectic manifold
must have even dimension.

Example 1.1 (Phase Space [3]). Let Q be a smooth manifold (in the context
of classical mechanics this is the configuration space), we shall see that
the cotangent bundle T ∗Q (called phase space) has a natural symplectic
structure: Let α ∈ T ∗Q and v ∈ Tα(T ∗Q), then we define the Liouville 1-
form θ on T ∗Q by 〈θα, v〉 = 〈α, (π∗v)〉. Where π∗ denotes the pushforward
of the projection π : T ∗Q → Q. (Here 〈, 〉 denotes the pairing on 1-forms
and tangent vectors). Finally we can take the exterior derivative to obtain
the symplectic form ω = dθ.
In local coordinates q1, ..., qn, p1, ..., pn the symplectic form can be written
as ω = dpi ∧ dqi, where the summation convention for repeated indices is
applied.
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Notice that if φ ∈ Diff(Q) then clearly φ∗ ∈ Diff(T ∗Q), but a nice property is
that φ∗ preserves the Liouville 1-form. To prove it let ψ = φ∗ and compute
for a vector field v on T ∗Q:

〈(ψ∗θ)α, vα〉 = 〈θψ(α), ψ∗vα〉 = 〈ψ(α), π∗ψ∗v〉
= 〈φ∗(α), φ−1∗ π∗vα〉 = 〈α, π∗vα〉
= 〈θα, vα〉

where we have used the fact that π(φ∗α) = φ−1(π(α)).

Definition 1.2. Let (M,ω) be a symplectic manifold, and f ∈ C∞(M). Then
Xf ∈ X(M) is said to be (globally) Hamiltonian with respect to f if

iXf
ω + df = 0.

The vector field Xf is also called the Hamiltonian vector field associated to
f ∈ C∞(M). The space of Hamiltonian vector fields over M is denoted by
HamVF(M).

Example 1.2. Consider the symplectic manifold (T ∗R ∼= R2, dp ∧ dq) and
let H be a real smooth function over T ∗R. Then, if we compute

(dp ∧ dq)(∂pH∂q − ∂qH∂p, ·) = −∂pHdp− ∂qHdq = −dH,
so XH = ∂pH∂q − ∂qH∂p.

Remark 1.2. Symplectic geometry arises naturally in classical mechanics
since, if H is the Hamiltonian of a classical system, then the equations of
motion of a free system are given by iXω + dH = 0, where ω is the sym-
plectic form of the phase space of the configuration space mentioned above.

For instance consider the last example: if ϕXH
t is the flow of XH then

d

dt
ϕXH
t = (XH)

ϕ
XH
t
,

which implies that

q̇∂q + ṗ∂p = ∂pH∂q − ∂qH∂p,
from where we can read Hamilton’s equations q̇ = ∂pH and ṗ = −∂qH .

Definition 1.3. Let (M1, ω1) and (M2, ω2) be two symplectic manifolds. A
smooth map f : M1 −→M2 is said to be symplectic if f∗ω2 = ω1.

The following is a important theorem [1]:

Theorem 1.1 (Liouville). Let Xf be a Hamiltonian vector field, and ϕXf

t be its
flow. Then ϕXf

t is symplectic. In particular LXf
ω = 0.

Moreover, if X is a vector field on M such that φXt is symplectic then
LXω = 0, this implies that iXω is closed since diXω = (LX − iXd)ω = 0.
Does it imply thatX is Hamiltonian? In general no, for instance, ifH1

dR(M)
does not vanish, it can not always be the case. Nevertheless, X is always
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locally Hamiltonian as a result of Poincaré lemma.

A symplectic structure on a symplectic manifold gives rise to a natural
Poisson structure on its algebra of functions C∞(M).

Definition 1.4. The map {, } : C∞(M) × C∞(M) → C∞(M) defined by
{f, g} = ω(Xf , Xg) is called the Poisson Bracket.

Remark 1.3. Note that

{f, g} = ω(Xf , Xg) = −iXf
iXgω = iXf

dg = Xf (g) = LXf
g.

This implies that

d{f, g} = d(LXf
g) = LXf

dg = −LXf
iXgω = −iXgLXf

ω − i[Xf ,Xg ]ω,

hence
X{f,g} = [Xf , Xg].

In addition, the Poisson bracket can be seen as a derivation in the following
sense:

{f, gh} = LXf
gh = gLXf

h+ hLXf
g = g{f, h}+ h{f, g}.

Proposition 1.1. The Jacobi identity for the Poisson bracket defined before is
equivalent to the fact that the symplectic form ω is closed.

Proof. Let Xf , Xg and Xh be Hamiltonian vector fields, we compute explic-
itly (refer to [5] for Cartan’s identities)

dω(Xf , Xg, Xh) =Xfω(Xg, Xh) +Xgω(Xh, Xg) +Xhω(Xf , Xg)

+ ω(Xf , [Xg, Xh]) + ω([Xg, Xh], Xf ) + ω(Xh, [Xf , Xg])

=Xfω(Xg, Xh) +Xgω(Xh, Xg) +Xhω(Xf , Xg).

+ {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}.
Using Remark 1.3 we see that

Xfω(Xf , Xg) = Xf ({g, h}) = d({g, h})(Xf ) = (−i[Xg ,Xh]ω)Xf

= ω(Xf , [Xg, Xh]) = {f, {g, h}},
therefore we conclude that

dω(Xf , Xg, Xh) = 2({f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}).
�

We have proved the following proposition:

Proposition 1.2. The pair (C∞(M), {, }) has a Lie algebra structure. Moreover,
we have a short exact sequence of Lie algebras

0 // R ı // C∞(M)
ν // HamVF(M) // 0

since if Xf = Xg, then f and g must differ by a constant. Here ν(f) = Xf and
HamVF(M) denotes the space of Hamiltonian vector fields on (M,ω).
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2. THE MOMENT MAP

The main reference for this part is [4].

Definition 2.1. Let M be a smooth manifold. A left action of a Lie group
G on M is a smooth map · : G×M →M such that:

(1) e · x = x ∀x ∈M (where e is the identity of G)
(2) (gh) · x = g · (h · x) ∀g, h ∈ G ∀x ∈M

Definition 2.2. Let us denote by g the Lie algebra of G. Fix A ∈ g and
x ∈M . Note that t 7−→ exp(tA)·x defines a curve onM . The corresponding
vector field defined by

β(A)(x) = βA(x) =
d

dt

∣∣∣∣
t=0

exp(tA) · x

is called the infinitesimal generator of the action corresponding to A.

Proposition 2.1. [1] Let A,B ∈ g, then β([A,B]) = −[βA, βB]. In other words,
if we define γ(A) = −β(A), then γ : g 7−→ X(M) is a Lie algebra homomorphism.

We would like to restrict ourselves to an action of a Lie group G on a
symplectic manifold (M,ω) such that γ(A) is a globally Hamiltonian vec-
tor field (Hamiltonian action) for each A ∈ g. The reason is that we would
like to relate classical observables with the elements of g via the homo-
morphism γ. Two common cases would be when H1

dR(M) = 0 or when
g = [g, g].

In this context it is natural to ask when does the dotted lift Ĵ : g −→ C∞(M)
in the diagram (2.1) exist such that it is a linear Lie algebra homomorphism
and makes the diagram commute, that is γA = ν(ĴA) = XĴA .

(2.1) 0 // R i // C∞(M)
ν // HamVF(M) // 0.

g

γ

OO

Ĵ

ffM
M
M
M
M
M
M
M

It is not difficult to find a linear map that does this job. However the Lie
homomorphism requirement would need a little work. For instance, if we
compute

ν(Ĵ([A,B]) = γ[A,B] = [γA, γB] = [ν(Ĵ(A)), ν(Ĵ(B))] = ν({Ĵ(A), Ĵ(B)}),

we note that the problem may be solved up to a constant. Define z(A,B) ∈
R by

z(A,B) = {Ĵ(A), Ĵ(B)} − Ĵ([A,B]).



INTRODUCTION TO THE MOMENT MAP 5

Can we make this constant vanish for allA,B ∈ g? This question and the
meaning of this constant will be treated more carefully in the next section.

Suppose that two of such linear maps Ĵ , Ĵ ′ : g → C∞(M,R) are given.
Then there exists h ∈ g∗ such that

Ĵ
′

= Ĵ + h.

If one computes {Ĵ ′
(A), Ĵ

′
(B)} = z(A,B) − h([A,B]), one sees that the

problem will be solved if z(A,B) = h([A,B]). The existence of such an
h ∈ g∗ will be an algebraic property of g.

Proposition 2.2. [3] Let A,B,C ∈ g, then
(1) z(A,B) = −z(B,A).
(2) z(A, [B,C]) + z(B, [C,A]) + z(C, [A,B]) = 0 (Jacobi Identity).

Definition 2.3. For a Hamiltonian symplectic action of a Lie group G on
a symplectic manifold (M,ω), if there exists a Lie algebra homomorphism
Ĵ : g −→ C∞(M) that makes the diagram (2.1) commutes, then the map

J : M 7−→ g∗

defined by J(x)(A) = Ĵ(A)(x), for A ∈ g, x ∈ M , is called a moment map
of the action.

Theorem 2.1 (E. Noether [4]). Consider a Hamiltonian symplectic action of a
Lie group G on a symplectic manifold (M,ω) with momentum map J . If H :
M 7−→ R is a G-invariant function (i.e. H(x) = H(g · x) ∀g ∈ G), then J is a
constant of the motion H , that is, J ◦ ϕXH

t = J , where ϕXH
t is the flow of XH .

Proof. Let us compute first

{Ĵ(A), H}(x) = (XĴ(A)H)(x) = (γ(A)H)(x)

=
d

dt

∣∣∣∣
t=0

H(exp(tA) · x) =
d

dt

∣∣∣∣
t=0

H(x) = 0

Therefore, Ĵ(A)(ϕXH
t ) is constant, but ϕXH

0 (x) = x. �

2.1. Phase Space. Suppose that we have an action of a Lie group G on the
configuration space Q. This action can be lifted to T ∗Q using the pullback
as we did before. Since the lifted action leaves the Liouville 1-form invari-
ant we see that Lγ(A)θ = 0 for A ∈ g. Therefore

Lγ(A)θ = (iγ(A)d+ diγ(a))θ = iγ(A)ω + d(iγ(A)θ) = 0,

so it is natural to define Ĵ(A) = iγ(A)θ.

Let us show now that the obstruction vanishes. Note that {Ĵ(A), Ĵ(B)} =
ω(γ(A), γ(B)). On the other hand

Ĵ([A,B]) = iγ([A,B])θ = i[γ(A),γ(B)]θ.
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Using Cartan’s identities and the fact that Lγ(A)θ = 0 we see that

i[γ(A),γ(B)]θ = Lγ(a)iγ(B)θ − iγ(B)Lγ(A)θ = γ(A)(θ(γ(B))).

Recall the explicit for the exterior derivate for a 1-form is

ω(γ(A), γ(B)) = dθ(γ(A), γ(B))

= γ(A)(θ(γ(B)))− γ(B)(θ(γ(A)))− θ([γ(A), γ(B)]).

So we can conclude that

ω(γ(A), γ(B)) = γ(A)(θ(γ(B))),

and therefore {Ĵ(A), Ĵ(B)} = Ĵ([A,B]).

We now want to find an expression for the moment map in terms of the
infinitesimal generators γ̃ : g −→ X(Q) on Q. Note that from the definition
of the Liouville 1-form we have, for α(q, pq) ∈ T ∗qM ,

θα(γ(A)α) = pq((π∗)αγ(A)α) = pq(γ̃(A)q).

Therefore we, can write the moment map in this example by

(2.2) J(α)(A) = pq(γ̃(A)q).

Example 2.1. [3] Consider the configuration space to be Q = R3, and the
rotation groupG = SO(3) acting on it. Recall that its Lie algebra is given by
so(3) = {A ∈M3(R) |A+At = 0}, we can define a Lie algebra isomorphism
ι : so(3)

∼=−→ R3 by  0 −a3 a2
a3 0 −a1
−a2 a1 0

 7−→
 a1

a2
a3


where ι([A,B]) = ι(A)× ι(B). Now we are going to compute the infinites-
imal generator γ̃(A) on Q:

γ̃(A)(q) =
d

dt

∣∣∣∣
t=0

exp(tι(A)) · q =
d

dt

∣∣∣∣
t=0

ι(tA) · q = ι(A)× q

Therefore, using equation (2.2), we see that Ĵ(A)(q, p) = p · (ι(A) × q) =
ι(A)(q × p). Hence

J(q, p) = p× q
which we interpret as the angular momentum, as we expected.

3. A FEW WORDS ON THE OBSTRUCTION

The following section describes a method developed in [3] to ensure that
the map Ĵ is indeed a Lie algebra homomorphism, nevertheless there is a
price to pay: we will need to enlarge the Lie algebra. This method is funda-
mental in the canonical group quantazation method developed by C.J. Isham.
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Recall the obstruction for the lift map Ĵ : g −→ C∞(M) to be a Lie alge-
bra homomorphism is measured by a bilinear map z : g × g −→ R which
is antisymmetric and satisfies the Jacobi identity. If we consider R as a
trivial g-module, then it is easily seen that z defines a cohomology class in
[z] ∈ H2(g,R) (Chevalley and Eilenberg cohomology). We showed that this
2-cocycle can be made to vanish if we could find an element h ∈ g∗ such
that z(A,B) = h([A,B]) for all A,B ∈ g, which is actually equivalent as
requiring that the cohomology class defined by z is the zero class.

If the cohomology class defined by the action of the group G is not the
zero class we can make a little trick called a central extension of the Lie
algebra. The idea is to ”enlarge the group in such a way that the Poisson
algebra bracket the new group does close”[3]. More precisely, we can con-
sider a central extension of g by R:

(3.1) 0 // R i // C∞(M)
j // Ham VF(M) // 0

0 // R α //

OO

g⊕ R
β //

ĴR

OO

g //

γ

OO

0

where α(r) = (0, r) and β(A, r) = A.

We will define a Lie bracket on g⊕ R by

[(A, r), (B, s)] = ([A,B], z(A,B)).

The new momentum map ĴR, constructed from the old one Ĵ , is defined by

ĴR(A, r) = Ĵ(A) = r.

Finally, if we compute

{ĴR(A, r), ĴR(B, s)} = {Ĵ(A) + r, Ĵ(B) + s} = {Ĵ(A), Ĵ(B)}

= Ĵ([A,B]) + z(A,B) = ĴR([A,B], z(A,B))

= ĴR([(A, r), (B, s)]),

we see that the desired property for diagram (3.1) is satisfied.
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