INTRODUCTION TO THE MOMENT MAP

JUAN CAMILO ORDUZ

ABSTRACT. This short notes were a guide for a short communication

given in the Summer School on Geometrical, Algebraic and Topological Meth-
ods on Quantum Field Theory, Villa de Leyva, Colombia, 2011.
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1. SYMPLECTIC GEOMETRY

A good introduction to symplectic geometry is [2] and a very complete
reference on symplectic geometry and classical mechanics is [IJ].

Definition 1.1. Let M be a smooth manifold and w € Q?(M) be a 2-form
on M. Then w is said to be symplectic if it is closed, i.e. dw = 0, and if it is
non-degenerated.The pair (M, w) is said to be a symplectic manifold.

Remark 1.1. Let A € M,,(R) be a real skew-symmetric square matrix. Then
det A = (—1)"det(A). This argument shows that a symplectic manifold
must have even dimension.

Example 1.1 (Phase Space [B]). Let @ be a smooth manifold (in the context
of classical mechanics this is the configuration space), we shall see that
the cotangent bundle 7@ (called phase space) has a natural symplectic
structure: Let & € T*Q and v € T,(T*Q), then we define the Liouville 1-
form 6 on T*Q by (6, v) = (o, (m4v)). Where 7, denotes the pushforward
of the projection 7 : T*Q — Q. (Here (,) denotes the pairing on 1-forms
and tangent vectors). Finally we can take the exterior derivative to obtain
the symplectic form w = df.

In local coordinates ¢, ..., ¢", p1, ..., pn the symplectic form can be written
as w = dp; A dq', where the summation convention for repeated indices is
applied.
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Notice that if ¢ € Diff(Q) then clearly ¢* € Diff(T*(Q)), but a nice property is
that ¢* preserves the Liouville 1-form. To prove it let ¢y = ¢* and compute
for a vector field v on T*Q:

(0 0)as va) = (By(a), Pxva) = (Y(a), metv)
= <¢*(O‘)»¢;17T*Ua> = (a, TVq)
= <90u Ua>

where we have used the fact that 7(¢*a) = ¢~ (7 ().

Definition 1.2. Let (), w) be a symplectic manifold, and f € C*°(M). Then
Xy € X(M) is said to be (globally) Hamiltonian with respect to f if
/) X fw + df = 0.

The vector field X is also called the Hamiltonian vector field associated to
f € C°°(M). The space of Hamiltonian vector fields over M is denoted by
HamVE(M).

Example 1.2. Consider the symplectic manifold (T*R = R2 dp A dg) and
let H be a real smooth function over T*R. Then, if we compute

(dp A dq)(OpHOy — 0gHO,,-) = —0,Hdp — 0;Hdq = —dH,
so Xy = OpHOy — 0,HO,.
Remark 1.2. Symplectic geometry arises naturally in classical mechanics
since, if H is the Hamiltonian of a classical system, then the equations of

motion of a free system are given by ixw + dH = 0, where w is the sym-
plectic form of the phase space of the configuration space mentioned above.

For instance consider the last example: if ¢; 7 is the flow of X then

d Xy _
prad —(XH)%XH,

which implies that

G0q + p0y, = OpH O, — 0,H0p,
from where we can read Hamilton’s equations ¢ = dpH and p = —0qH.
Definition 1.3. Let (M}, w;) and (M3, ws) be two symplectic manifolds. A
smooth map f : M; — M> is said to be symplectic if f*ws = wy.

The following is a important theorem [I]}:

Theorem 1.1 (Liouville). Let X; be a Hamiltonian vector field, and wf(f be its
flow. Then <p;Xf is symplectic. In particular Lx w = 0.

Moreover, if X is a vector field on M such that ¢;* is symplectic then
Lxw = 0, this implies that i xw is closed since dixw = (Lx — ixd)w = 0.
Does it imply that X is Hamiltonian? In general no, for instance, if H',(M)
does not vanish, it can not always be the case. Nevertheless, X is always
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locally Hamiltonian as a result of Poincaré lemma.

A symplectic structure on a symplectic manifold gives rise to a natural
Poisson structure on its algebra of functions C*°(A1).

Definition 1.4. The map {,} : C*°(M) x C*°(M) — C°°(M) defined by
{f, 9} = w(Xy, X,) is called the Poisson Bracket.

Remark 1.3. Note that
1f,9} = w(Xy, Xy) = —ix,ix,w =ix,dg = Xs(g9) = Lx,g.
This implies that
d{fvg} = d(Lng) = Ldeg = _LXfZ‘ng = _ngLXfw - Z‘[Xf,Xg}w7
hence
Xiray = [X5 Xg]-
In addition, the Poisson bracket can be seen as a derivation in the following
sense:

{f,gh} = Lx,;9h = gLx;h 4+ hLx,g9 = g{f, h} + h{f, g}.

Proposition 1.1. The Jacobi identity for the Poisson bracket defined before is
equivalent to the fact that the symplectic form w is closed.

Proof. Let X, X, and X}, be Hamiltonian vector fields, we compute explic-
itly (refer to [B]] for Cartan’s identities)
dw(X 7, X g, Xp) =X jw(Xg, Xp) + Xgw(Xn, Xg) + Xpw (X, X,)
+ (X, [Xg, Xn]) + w([Xg, Xnl, Xi) + w(Xn, [ X7, Xg])
=X pw(Xg, Xp) + Xgw(Xp, Xg) + Xpw(Xy, Xg).
/g, bty +{g,{h, f1} + {h. S g3}
Using Remark [1.3|we see that
Xpw(X7. Xg) = Xp({9. 1)) = d({9. 1) (X)) = (~ipx, 1) X
= w(Xp, [Xg, Xa) = {F, {0 h}}.
therefore we conclude that

dw(Xy, Xg, Xn) = 2({f,{9,h}} + {9, {h, f}} + {h. {f. 9}}).

We have proved the following proposition:

Proposition 1.2. The pair (C*°(M),{, }) has a Lie algebra structure. Moreover,
we have a short exact sequence of Lie algebras

0 R—" > C®(M) —*—> HaimVF(M) —— 0

since if Xy = Xy, then f and g must differ by a constant. Here v(f) = X and
HamVE(M) denotes the space of Hamiltonian vector fields on (M, w).
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2. THE MOMENT MAP
The main reference for this part is [4].

Definition 2.1. Let M be a smooth manifold. A left action of a Lie group
G on M is a smooth map - : G x M — M such that:

(1) e-x =2 Vz € M (where e is the identity of G)

(2) (gh) - x=g-(h-x) Vg,he GVx e M

Definition 2.2. Let us denote by g the Lie algebra of G. Fix A € g and
x € M. Note thatt — exp(tA)-x defines a curve on M. The corresponding
vector field defined by

A:U:Aarzi exp(tA) -z
BA)@) = Bw) = | explea)

is called the infinitesimal generator of the action corresponding to A.

Proposition 2.1. [ Let A, B € g, then 3([A, B]) = —[84, B]. In other words,
if we define y(A) = —(A), then y : g — X(M) is a Lie algebra homomorphism.

We would like to restrict ourselves to an action of a Lie group G on a
symplectic manifold (M, w) such that v(A) is a globally Hamiltonian vec-
tor field (Hamiltonian action) for each A € g. The reason is that we would
like to relate classical observables with the elements of g via the homo-
morphism 7. Two common cases would be when H!,(M) = 0 or when

g=1g,0

In this context it is natural to ask when does the dotted lift .J : g — C°(M)
in the diagram (2.1) exist such that it is a linear Lie algebra homomorphism
and makes the diagram commute, that is 74 = v(J4) = X ja-

21 0 R—' > C®°(M) —Y— HamVF(M) — 0.

It is not difficult to find a linear map that does this job. However the Lie
homomorphism requirement would need a little work. For instance, if we
compute

v(J([A, B]) = P = 34,97 = (I (4)), v(J(B))] = v({J(A), J(B)}),

we note that the problem may be solved up to a constant. Define z(A, B) €
R by

2(A, B) = {J(A), J(B)} — J(IA, B)).
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Can we make this constant vanish for all A, B € g? This question and the
meaning of this constant will be treated more carefully in the next section.

Suppose that two of such linear maps J,.J : g — C°°(M,R) are given.
Then there exists h € g* such that

+ h.
If one computes {.J (4),J (B)} (A, B) — h([A, B]), one sees that the
problem will be solved if z(A, B) = h([A, B]). The existence of such an
h € g* will be an algebraic property of g.

Proposition 2.2. [B] Let A, B,C € g, then

(1) 2(A,B) = —z2(B, A).

(2) z(A,[B,C]) + 2(B,[C, A]) + 2(C, [A, B]) = 0 (Jacobi Identity).
Definition 2.3. For a Hamiltonian symplectic action of a Lie group G on
a symplectic manifold (M, w), if there exists a Lie algebra homomorphism
J:ig— C®°(M ) that makes the diagram commutes, then the map

J:Mv+—g*
defined by J(z)(A) = J(A)(z), for A € g, x € M, is called a moment map
of the action.

J =J
=z

Theorem 2.1 (E. Noether [H]). Consider a Hamiltonian symplectic action of a
Lie group G on a symplectic manifold (M,w) with momentum map J. If H :
M +—— R is a G-invariant function (i.e. H(x) = H(g-x) Vg € G), then Jisa
constant of the motion H, that is, J o o;# = J, where @™ is the flow of Xp.

Proof. Let us compute first
{J(A), H}(z) = (X0 H)(x) = (v(A)H)(2)

d d
= 2| H(exp(td)-z)=2| H(z)=0
|, Hew(tA) 0 = 5 H
Therefore, J (A)(cthH ) is constant, but gpéfH (z) = x. O

2.1. Phase Space. Suppose that we have an action of a Lie group G on the
configuration space (). This action can be lifted to 7" using the pullback
as we did before. Since the lifted action leaves the Liouville 1-form invari-
ant we see that L,(4)¢0/ = 0 for A € g. Therefore

Lyt = (iy(ayd + diy(0))0 = iy(ayw + d(iy0)0) =0,
so it is natural to define J(A) = in(4)0-

Let us show now that the obstruction vanishes. Note that {.J(A4), J(B)} =
w(v(A),v(B)). On the other hand

A

J([A, B]) = iy(a,B)0 = i}y(a) (B0
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Using Cartan’s identities and the fact that L, 4)¢0 = 0 we see that
i) 1(B)0 = Ly(ayiy()0 — () Ly()0 = 7(A)(0(7(B))).
Recall the explicit for the exterior derivate for a 1-form is
w(v(A),~(B)) = db(v(A),~(B))

=(A)(0(v(B))) = (B)(0(~(A))) = 6([7(A),7(B)])-

So we can conclude that
w(7(A),7(B)) =1 (A)(0(~(B))),

and therefore {J(A), J(B)} = J([A, B)).

We now want to find an expression for the moment map in terms of the
infinitesimal generators ¥ : g — X(Q) on ). Note that from the definition
of the Liouville 1-form we have, for a(q, p;) € T; M,

0o (7(A)a) = Pg((me)a7(A)a) = Pg(7(A)g)-
Therefore we, can write the moment map in this example by
(22) J(a)(A) = pqg(7(A)g)-

Example 2.1. [B] Consider the configuration space to be @ = R3, and the
rotation group G = SO(3) acting on it. Recall that its Lie algebra is given by
50(3) = {A € M3(R)| A+ A = 0}, we can define a Lie algebra isomorphism

L:50(3) — R3 by
0 —as ao aj
as 0 —al — a9
—ag al 0 as

where (([A, B]) = «(A) x «(B). Now we are going to compute the infinites-
imal generator (A) on Q:

A)e) = - t_ob(tA) ~q=1(A) xq

Therefore, using equation (2.2), we see that J(A)(¢,p) = p - (1(A) x q) =
t(A)(¢q x p). Hence

d

» exp(t(4)) ¢ =

J(¢,p) =pxq
which we interpret as the angular momentum, as we expected.

3. A FEW WORDS ON THE OBSTRUCTION

The following section describes a method developed in [B]] to ensure that
the map J is indeed a Lie algebra homomorphism, nevertheless there is a
price to pay: we will need to enlarge the Lie algebra. This method is funda-
mental in the canonical group quantazation method developed by C.J. Isham.



INTRODUCTION TO THE MOMENT MAP 7

Recall the obstruction for the lift map .J : g — C°(M) to be a Lie alge-
bra homomorphism is measured by a bilinear map z : g x g — R which
is antisymmetric and satisfies the Jacobi identity. If we consider R as a
trivial g-module, then it is easily seen that z defines a cohomology class in
[2] € H*(g,R) (Chevalley and Eilenberg cohomology). We showed that this
2-cocycle can be made to vanish if we could find an element h € g* such
that z(A, B) = h([A, B]) for all A, B € g, which is actually equivalent as
requiring that the cohomology class defined by z is the zero class.

If the cohomology class defined by the action of the group G is not the
zero class we can make a little trick called a central extension of the Lie
algebra. The idea is to “enlarge the group in such a way that the Poisson
algebra bracket the new group does close”[B]. More precisely, we can con-
sider a central extension of g by R:

J

31 o R—"' >~ C®(M) Ham VF(M) 0
j]R Yy
a B
0 R gdR g 0

where a(r) = (0,7) and 5(A,r) = A.

We will define a Lie bracket on g & R by
[(A,r), (B, s)] = ([A, B], 2(A, B)).
The new momentum map Jg, constructed from the old one J, is defined by
Jr(A, 1) = J(A) =r

Finally, if we compute

{Jr(A,7), Jr(B,s)} = {J(A) +r,J(B) + s} = {J(A),J(B)}
= J(|A, B]) + 2(A, B) = Jr([A, B, 2(A, B))
= jR([(A,T), (B,S)]),

we see that the desired property for diagram is satisfied.
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