
S1-EQUIVARIANT DIRAC OPERATORS ON THE HOPF FIBRATION

JUAN CAMILO ORDUZ

Abstract. In this expository article we discuss the fundamentals of the Hopf fibration
with particular emphasis on the Dirac-type operators induded, in the sense of [7], by
the Hodge-de Rham and spin-Dirac operator. In addition, we compute the Dirac-
Schrödinger type operator introduced in [19] and [20].
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1. The Levi-Civita connection

In this first section we describe the Levi-Civita connection of the standard round
metrics of the spheres S2 and S3. In particular, we well compute the components of the
connection 1-form in an appropriate local orthonormal basis. These expressions will be
used afterwards to compute the spin connection for the associated spinor bundles.

1.1. Round metric on S2. Let us consider a 2-sphere of radius r > 0

S2(r) := {(x1, x2, x3) | x2
1 + x2

2 + x2
3 = r2} ⊂ R3,

equipped with the induced Riemanian metric from R3. With respect to a local parametriza-
tion given by polar coordinates

x1(r, θ, φ) := cosφ sin θ,

x2(r, θ, φ) := sinφ sin θ,(1.1)

x3(r, θ, φ) := cos θ,

where 0 < θ < π and 0 < φ < 2π, the metric can be written as ([9])

gTS
2(r) = r2dθ2 + r2 sin2 θdφ2.(1.2)
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The only non-vanishing Christoffel symbols associated to this metric are ([10])

Γθφφ =
1

2r2
(−∂θ(r2 sin2 θ)) = − sin θ cos θ,

Γφθφ =
1

2r2 sin2 θ
(∂θ(r

2 sin2 θ)) = cot θ.

Hence, we have the following explicit formulas for the Levi-Civita connection:

∇∂θ∂θ =0,

∇∂φ∂φ =− sin θ cos θ∂θ,(1.3)

∇∂θ∂φ = cot θ∂φ,

∇∂φ∂θ = cot θ∂φ.

Let us consider the following local orthonotmal basis for TS2(r)

e1 :=
∂θ
r
,

e2 :=
∂φ

r sin θ
,

with associated dual frame

e1 :=rdθ,

e2 :=r sin θdθ.

For further reference we compute the exterior derivative

de1 = 0,

de2 = d(r sin θdφ) = r cos θdθ ∧ dφ =
cot θ

r
e1 ∧ e2.

In this orthonormal basis the volume form is volS2(r) = e1∧e2. To be precise, we consider
the orientation such that volR3 = rdr ∧ volS2(r).

We want now calculate the components ωij ∈ Ω1(S2) of the connection 1-form associ-
ated with this basis. These components defined by the relations

∇ej =: ωij ⊗ ei,(1.4)

where the sum over repeated indices is understood. From (1.3) and (1.4) we get

∇e1e1 = 0,

∇e1e2 = ∂θ

(
1

r2 sin θ

)
∂φ +

(
1

r2 sin θ

)
∇∂θ∂φ = −cos θ

r2
∂φ +

cos θ

r2
∂φ = 0,

∇e2e1 =

(
1

r2 sin θ

)
∇∂φ∂θ =

(
1

r2 sin θ

)
cot θ∂φ =

cot θ

r
e2,

∇e2e2 =

(
1

r sin θ

)2

∇∂φ∂φ = −
(

1

r sin θ

)2

sin θ cos θ∂θ = −cot θ

r
e1.
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We can read from the expressions above

ω12 = −ω21 = −cot θ

r
e2.(1.5)

Remark 1.1 (Structure Equations). Since the Levi-Civita connection is compatible with
metric, then ωij = −ωji. On the other hand, since it is also torsion-free one can verify
that the components ωij satisfy the structure equation ([17, Proposition 5.32])

dei + ωij ∧ ej = 0.(1.6)

Note for example for i = 2,

de2 + ω21 ∧ e1 =
cot θ

r
e1 ∧ e2 +

cot θ

r
e2 ∧ e1 = 0.

From the components of the connection 1-form we can compute the components Ωij ∈
Ω2(S2) of the curvature using the relation ([17, Proposition 5.21])

Ωij = dωij + ωik ∧ ωkj .(1.7)

In this particular case, the only non-zero component is

Ω12 =dω12 =
csc2 θ

r2
e1 ∧ e2 − cot θ

r
de2 =

csc2 θ

r2
e1 ∧ e2 − cot2 θ

r2
e1 ∧ e2 =

1

r2
e1 ∧ e2.

Remark 1.2 (Gauß-Bonnet Theorem). If we integrate the 2-form Ω12/2π over S2(r) we
obtain ∫

S2(r)

Ω12

2π
=

1

2πr2

∫
S2(r)

e1 ∧ e2 =
4πr2

2πr2
= 2,

which verifies the Gauß-Bonnet theorem since the Euler characteristic as χ(S2(r)) = 2
for any r > 0.

1.2. Round metric on S3. We now consider the 3-sphere

S3 := {(z0, z1) : |z0|2 + |z1|2 = 1} ⊂ C2

with the induced round metric. We want to proceed as above in order to calculate
explicitly the connection 1-form and the curvature. We introduce a local parametrization,
the so-called Hopf coordinates, of S3 given by

z0(ξ1, ξ2, η) := eiξ1 cos η,(1.8)

z1(ξ1, ξ2, η) := eiξ2 sin η,

where 0 < ξ1, ξ2 < 2π and 0 < η < π/2. The metric induced from C2 ∼= R4 can be
written as

gTS
3

= cos2 ηdξ2
1 + sin2 ηdξ2

2 + dη2.(1.9)
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1.2.1. The volume form. We now want to determine the induced orientation on S3 from
the standard orientation of C2 with respect to the coordinates (1.8). To do this we
it is enough to compute the volume form. Is it easy to see from (1.9) that volS3 =
± sin η cos ηdξ1 ∧ dξ2 ∧ dη, but we want to pick the sign such that volC2 = r3dr ∧ volS3

where r denotes the radial coordinate. If we define

z0(r) := rz0 = reiξ1 cos η,

z1(r) := rz1 = reiξ2 sin η,

then we have [11, Section V.1]

volC2 =

(
i

2

)2

dz0(r) ∧ dz̄0(r) ∧ dz1(r) ∧ dz̄1(r).(1.10)

Therefore, we need to compute the form dz0(r) ∧ dz̄0(r) ∧ dz1(r) ∧ dz̄1(r). First, note
that

dz0(r) = z0dr + rdz0,

dz̄0(r) = z̄0dr + rdz̄0,

dz1(r) = z1dr + rdz1,

dz̄1(r) = z̄1dr + rdz̄1.

On the other hand we can express

dz0 =iz0dξ1 − tan ηz0dη,

dz̄0 =− iz̄0dξ1 − tan ηz̄0dη,

dz1 =iz1dξ2 + cot ηz1dη,

dz̄1 =− iz̄1dξ2 + cot ηz̄1dη.

Using the relations |z0|2 = cos2 η and |z1|2 = sin2 η we calculate

dz0(r) ∧ dz̄0(r) =rz0dr ∧ dz̄0 − rz̄0dr ∧ dz0 + r2dz0 ∧ dz̄0

=rdr ∧ (−i cos2 ηdξ1 − sin η cos ηdη)

− rdr ∧ (i cos2 ηdξ1 − sin η cos ηdη)

+ r2(−2i sin η cos ηdξ1 ∧ dη)

=− 2ir cos2 ηdr ∧ dξ1 − 2ir2 sin η cos ηdξ1 ∧ dη,

and

dz1(r) ∧ dz̄1(r) =rz1dr ∧ dz̄1 − rz̄1dr ∧ dz1 + r2dz1 ∧ dz̄1

= rdr ∧ (−i sin2 ηdξ2 + sin η cos ηdη)

+ rdr ∧ (i sin2 ηdξ2 + sin η cos ηdη)

r2(2i sin η cos ηdξ2 ∧ dη)

= − 2ir sin2 ηdr ∧ dξ2 + 2ir2 sin η cos ηdξ2 ∧ dη.
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Hence, we find

dz0(r) ∧ dz̄0(r) ∧ dz1(r) ∧ dz̄1(r) = 4r3 sin η cos3 ηdr ∧ dξ1 ∧ dξ2 ∧ dη
− 4r3 sin3 η cos ηdξ1 ∧ dη ∧ dr ∧ dξ2

= 4r3 sin η cos ηdr ∧ dξ1 ∧ dξ2 ∧ dη.

We conclude from (1.10) that the desired volume form is

volS3 = − sin η cos ηdξ1 ∧ dξ2 ∧ dη.(1.11)

In particular,

vol(S3) =

∫
S3

(− sin η cos ηdξ1 ∧ dξ2 ∧ dη)

=

∫ π/2

0

∫ 2π

0

∫ 2π

0

1

2
sin 2ηdξ1dξ2dη

=(2π)2

(
−1

4
cos 2η

∣∣∣∣π/2
0

)
=2π2.

1.2.2. The connection 1 -form. Our next task is to compute the connection 1-form of
the Levi-Civita connection associated to the metric (1.9) with respect to a convenient
orthonormal basis, which will become natural in study the Hopf fibration below. To
begin, with we compute the non-vanishing Christoffel symbols

Γηξ1ξ1 =
1

2
(−∂η(cos2 η)) = sin η cos η,

Γηξ2ξ2 =
1

2
(−∂η(sin2 η)) = − sin η cos η,

Γξ1ξ1η =
1

2 cos2 η
(∂η(cos2 η)) = − tan η,

Γξ2ξ2η =
1

2 sin2 η
(∂η(sin

2 η)) = cot η.

As before, the relations above imply the explicit action of the Levi-Civita connection on
the induced coordinate vector fields

∇∂ξ1∂ξ1 = sin η cos η∂η,

∇∂ξ2∂ξ2 =− sin η cos η∂η,(1.12)

∇∂η∂ξ1 =− tan η∂ξ1 ,

∇∂η∂ξ2 = cot η∂ξ2 .

Consider the local orthonormal basis

e1 :=∂η,

e2 := tan η∂ξ1 − cot η∂ξ2 ,(1.13)

e3 :=∂ξ1 + ∂ξ2 .



6 JUAN CAMILO ORDUZ

Remark 1.3. To verify the orthonormality condition observe for example

〈e2, e3〉 = tan η〈∂ξ1 , ∂ξ1〉 − cot η〈∂ξ2 , ∂ξ2〉 = tan η cos2 η − cot η sin2 η = 0.

The associated dual basis of (1.13) is

e1 :=dη,

e2 :=
1

2
sin 2η(dξ1 − dξ2),

e3 := cos2 ηdξ1 + sin2 ηdξ2.

The corresponding exterior derivatives are

de1 =0,

de2 = cos 2ηdη ∧ (dξ1 − dξ2) = 2 cot 2ηe1 ∧ e2,(1.14)

de3 =− 2 sin η cos ηdη ∧ (dξ1 − dξ2) = −2e1 ∧ e2.

Remark 1.4 (Volume form). Note in particular

e1 ∧ e2 ∧ e3 =dη ∧ (sin η cos η(dξ1 − dξ2)) ∧ (cos2 ηdξ1 + sin2 2ηdξ2)

= sin3 η cos ηdη ∧ dξ1 ∧ dξ2 − sin η cos3 ηdη ∧ dξ2 ∧ dξ1

= sin η cos ηdη ∧ dξ1 ∧ dξ2.

so we see that volS3 := −e1 ∧ e2 ∧ e3.

Remark 1.5. The following trigonometric relations will be needed later:

tan η − cot η =
sin2 η − cos2 η

sin η cos η
= −2 cot 2η.

tan η + cot η =
sin2 η + cos2 η

sin η cos η
= 2 csc 2η.

tan2 η − cot2 η =(tan η − cot η)(tan η + cot η) = −4 csc 2η cot 2η.

Now we use (1.12) to compute the components ωij ∈ Ω1(S3) of the connection 1-form
with respect to this basis (see (1.4)). For ∇e1 we get

∇e1e1 =0,

∇e2e1 = tan η∇∂ξ1∂η − cot η∇∂ξ2∂η = −(tan2 η∂ξ1 + cot2 η∂ξ2)

=− (tan η − cot η)(tan η∂ξ1 − cot η∂ξ2)− (∂ξ1 + ∂ξ2) = 2 cot 2ηe2 − e3.

∇e3e1 =∇∂ξ1∂η +∇∂ξ2∂η = − tan η∂ξ1 + cot η∂ξ2 = −e2.

For ∇e2 we compute similarly

∇e1e2 = sec2 η∂ξ1 + tan η∇∂η∂ξ1 + csc2 η∂ξ2 − cot η∇∂η∂ξ2
=(sec2 η − tan2 η)∂ξ1 + (csc2 η − cot2 η)∂ξ2 = ∂ξ1 + ∂ξ2 = e3,

∇e2e2 = tan2 η∇∂ξ1∂ξ1 + cot2 η∇∂ξ2∂ξ2 = sin η cos η(tan2 η − cot2 η)∂η = −2 cot 2ηe1,

∇e3e2 = tan η∇∂ξ1∂ξ1 − cot η∇∂ξ2∂ξ2 = sin η cos η(tan η + cot η)e1 = e1.
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and finally for ∇e3

∇e1e3 =∇∂η∂ξ1 +∇∂η∂ξ2 = − tan η∂ξ1 + cot η∂ξ2 = −e2,

∇e2e3 = tan η∇∂ξ1∂ξ1 − cot η∇∂ξ2∂ξ2 = sin η cos η(tan η + cot η)∂η = e1,

∇e3e3 =0.

From these expressions we can read the components:

ω12 =− 2 cot 2ηe2 + e3,

ω13 =e2,(1.15)

ω23 =− e1.

Remark 1.6. Using (1.14), let us verify the structure equations (1.6),

de1 =− ω12 ∧ e2 − ω13 ∧ e3 = (2 cot 2ηe2 − e3) ∧ e2 − e2 ∧ e3 = 0,

de2 =− ω21 ∧ e1 − ω23 ∧ e3 = (−2 cot 2ηe2 + e3) ∧ e1 + e1 ∧ e3 = 2 cot 2ηe1 ∧ e2,

de3 =− ω31 ∧ e1 − ω32 ∧ e2 = e2 ∧ e1 − e1 ∧ e2 = −2e1 ∧ e2.

1.2.3. The curvature. To end this section, we calculate the components Ωij ∈ Ω2(S3) of
the curvature using (1.7). First we compute the exterior derivative of ωij ,

dω12 = 4 csc2 2ηe1 ∧ e2 − 2 cot 2ηe2 ∧ de2 + de3 = 2(2 csc2 2η − 1)e1 ∧ e2,

dω13 = de2 = 2 cot 2ηe1 ∧ e2,

dω23 = d(−e1) = 0.

Finally, a straight forward computations show that

Ω12 =dω12 + ω13 ∧ ω32 = 2(2 csc2 2η − 1)e1 ∧ e2 + e2 ∧ e1 = (4 csc2 2η − 3)e1 ∧ e2,

Ω13 =dω13 + ω12 ∧ ω23 = (−2 cot 2ηe2 + e3) ∧ (−e1) = −2 cot 2ηe1 ∧ e2 + e1 ∧ e3,

Ω23 =dω23 + ω21 ∧ ω13 = 2 cot 2ηe1 ∧ e2 + (2 cot 2ηe2 − e3) ∧ e2 = 2 cot 2ηe1 ∧ e2 + e2 ∧ e3.

2. Topology and geometry of the Hopf fibration

In this section we introduce the Hopf fibration and establish notation. The Hopf
fibration is a well-known case of study where many of geometric and topological quantities
can be explicitly worked calculated. For more complete treatments refer for example to
[6, Section III.17] and [18, Section 9.4]. Concretely, the Hopf fibration

S1 � � // S3

π

��
S2

is a non-trivial S1-principal bundle over S2. We will verify this by computing the tran-
sition functions explicitly. In addition, if we endow S3 with the round metric (1.9)
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introduced in Section 1.2, we will see that the metric that we need to consider on S2 so
that π : S3 −→ S2 becomes a Riemannian submersion is precisely (1.2) with r = 1/2.
Next we will use this result to compute the corresponding Chern class using Chern-Weil
theory ([17, Chapter 6]). Finally we will compute the Hopf invariant associated to π.

2.1. Definition and properties of the Hopf fibration. Let us consider an action of
S1 := {λ ∈ C : |λ| = 1} ⊂ C on S3 defined for λ ∈ S1 and (z0, z1) ∈ S3 by

λ(z0, z1) := (λz0, λz1).

It is clear that this action is orientation and metric preserving. In addition, this action
is free and the quotient space S3/S1 can be equipped with a unique smooth structure
such that the orbit map π : S3 −→ S3/S1 is smooth ([25, Theorem 3.58]). Indeed, one
can identify S3/S1 ∼= S2.

Proposition 2.1. The orbit map is given explicitly by

(2.1) π : S3 // S2

(z0, z1) � // (a, b) := (2z0z̄1, |z0|2 − |z1|2).

This function is known as the Hopf map ([6, Section III.17]).

Proof. First of all note that, since |z0|2 + |z1|2 = 1, then

|a|2 + |b|2 = 4|z0|2|z1|2 + (|z0|2 − |z1|2)2 = (|z0|2 + |z1|2)2 = 1,

which shows that so the map π is well-defined. Now let us see why π as defined above
is the orbit map. For λ ∈ S1 ⊂ C we trivially have π(λz0, λz1) = π(z0, z1). On the
other hand, let us assume that π(z0, z1) = π(w0, w1). We want to show that there exists
λ ∈ S1 such that (z0, z1) = λ(w0, w1). Let us write these points in polar coordinates as
zk = rke

iϕk and wk = ske
iψk with rk, sk ≥ 0 for k = 0, 1. One easily verifies that the

following conditions must hold true

ei(ϕ0−ϕ1)r0r1 = ei(ψ0−ψ1)s0s1,

r2
0 − r2

1 = s2
0 − s2

1,

r2
0 + r2

1 = s2
0 + s2

1 = 1.

The last two equations imply r0 = s0 and r1 = s1. Finally, note we can write

zk = rke
iϕk = ske

iϕk = (ei(φk−ψk))ske
iψk ,

so the claim follows taking λ := ei(φk−ψk), which y the firs equation above we know is
independent of k. �

With respect to the coordinates (1.8) we can write the Hopf map as

(2.2) π(eiξ1 cos η, eiξ2 sin η) = (ei(ξ1−ξ2) sin(2η), cos(2η)),

from where we see, in view of (1.1), that the Hopf map π defined above is surjective.
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2.2. S1-bundle structure. In this subsection we show that the map π : S3 −→ S2 is
a non-trivial S1-principal bundle. To do this we will compute the transition functions
following [18, Example 9.9]. Consider two local charts on S2 using the spherical coordi-
nates (1.1), but with different choices domains for the parameters θ and φ. For ε > 0
small enough define

UN :={x(θ, φ) | 0 ≤ θ ≤ π/2 + ε, 0 ≤ φ < 2π},(2.3)

US :={x(θ, φ) | π/2− ε ≤ θ ≤ π, 0 ≤ φ < 2π}.

The sets UN and US are the northern and southern hemispheres respectively and the
intersection UN ∩ US is an equator strip which is homeomorphic to S1. Note that if
(z0, z1) ∈ π−1(UN ), it follows from (2.2) that z0 6= 0. Analogously, if (z0, z1) ∈ π−1(US)
then z1 6= 0. We can therefore define two local trivializations

ϕN : π−1(UN ) // UN × S1

(z0, z1) � //
(

(π(z0, z1),
z0

|z0|

)
and

ϕS : π−1(US) // US × S1

(z0, z1) � //
(

(π(z0, z1),
z1

|z1|

)
.

If (z0, z1) ∈ π−1(UN ∩ UZ) then |z0| = |z1| =
√

2/2 since this correspond to the value
η = π/4. Thus

ϕN ◦ ϕ−1
S

(
(π(z0, z1),

√
2z1

)
=
(

(π(z0, z1),
√

2z0

)
.

This shows that the transition function gNS : UN ∩ US −→ S1 defined by the relation

ϕ−1
S (x, λ) = ϕ−1

N (x, gNS(x)λ) for (x, λ) ∈ UN ∩ US × S1,

is given by

gNS(π(z0, z1)) =
z0

z1
∈ S1.

Since the transition function which generates a trivial bundle S2×S1 is gNS = 1 ∈ S1 ⊂ C
we see that the Hopf map is not trivial.

2.3. Induced Riemannian metric. Let us consider now S3 equipped with the metric
studied in Section 1.2. We now describe a metric on the quotient space S2 so that
the Hopf map becomes a Riemannian fibration, i.e. such that dπ : ker(dπ)⊥ −→ TS2

is an isometry. In view of the expression of the Hopf map in the coordinates (1.8),

π(eiξ1 cos η, eiξ2 sin η) = (ei(ξ1−ξ2) sin(2η), cos(2η)), we define functions θ = θ(ξ1, ξ2, η)
and φ = φ(ξ1, ξ2, η) to parametrize the image of π as

(θ, φ) 7−→ (eiφ(ξ1,ξ2,η) sin(θ(ξ1, ξ2, η)), cos(θ(ξ1, ξ2, η))),
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son that in the (θ, φ)-coordinates,

π(ξ1, ξ2, η) = (θ(ξ1, ξ2, η), φ(ξ1, ξ2, η)) = (2η, ξ1 − ξ2).

With respect to the the coordinate local basis {∂ξ1 , ∂ξ2 , ∂η} and {∂θ, ∂φ} the derivative
of the Hopf map π is

dπ(ξ1, ξ2, η) =

(
0 0 2
1 −1 0

)
.

In particular,

dπ(ξ1, ξ2, η)(∂ξ1 + ∂ξ2) = 0,

dπ(ξ1, ξ2, η)(∂ξ1 − ∂ξ2) = 2∂φ,

dπ(ξ1, ξ2, η)∂η = 2∂θ.

The first of these relations is not surprising since X = −(∂ξ1 + ∂ξ2) is the generating
vector field of the action and therefore is tangent to the fibers. More precisely, the
generator vector field X of the S1-action is defined to act on a on a smooth function
f ∈ C∞(S3) as ([4, Equation (1.2)])

(Xf)(ξ1, ξ2, η) :=
d

dt
f(e−it(ξ1, ξ2, η))

∣∣∣∣
t=0

=
d

dt
f(ξ1 − t, ξ2 − t, η)

∣∣∣∣
t=0

=− ∂ξ1f(ξ1, ξ2, η)− ∂ξ2f(ξ1, ξ2, η).

Remark 2.1 (Mean curvature form). Since ‖X‖ = 1 , the mean curvature 1-form
κ := −d log(‖X‖) vanishes, which shows that the S1-fibers are totally geodesic.

The requirement on the metric 〈·, ·〉S2 to ensure π to be a Riemannian fibration is
〈Y, Y 〉S3 = 〈dπ(Y ), dπ(Y )〉S2 for all vector fields Y orthogonal to ∂ξ1 + ∂ξ2 , i.e. hori-
zontal vector fields. Let us consider the local orthonormal basis (1.13). Observe that
e1 = ∂η and e2 = tan η∂ξ1 − cot η∂ξ2 are horizontal unit vector fields. Hence, their image
under dπ must also have norm one. Since

dπ(e1) =(tan η + cot η)∂φ = 2 csc 2η∂φ,

dπ(e2) =2∂θ,

the conditions require are

‖2 csc 2η∂φ‖S2 = 1,

‖2∂θ‖S2 = 1.

That is, we need to equip S2 with the Riemannian metric

(2.4) gTS
2(1/2) =

1

4
dθ2 +

1

4
sin2 θdφ2.

In summary, the image of the Hopf map is a 2-sphere of radius 1/2 with the usual round
metric of Section 1.1.

2.4. Connection form and curvature.
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2.4.1. The Levi-Civita connection. The metric on S3 defines a connection on the principal
bundle π : S3 −→ S2 ([3, Beispiel 3.3]). We want to find the associated connection 1-
form and calculate the curvature. First, observe that the Lie algebra s1 of S1 is can
be identified iR (exponential map). The horizontal space H defined by the metric on
S3 is the bundle generated by the horizontal vector fields e1 and e2. We aim to find
the connection 1-form ω ∈ Ω1(S3, s1) associated to this horizontal bundle defined by
the requirements kerω = H and ω(X) = i ∈ s1. The natural choice is ω := −ie3. For
example,

−ie3(X) = i(cos2 ηdξ1 + sin2 ηdξ2)(−∂ξ1 − ∂ξ2) = i(cos2 η + sin2 η) = i ∈ s1.

The curvature of this connection is Ω := dω = 2ie1 ∧ e2 ∈ Ω2(S3, s1). Note that since

[e1, e2] = ∇e1e2 −∇e2e1 = −2 cot 2ηe2 + 2e3,

then the projection P onto the vertical space is

P ([e1, e2]) = 2e3 = −2X,

which shows that the curvature satisfies

Ω(e1, e2)⊗X = −P ([e1, e2])⊗ i = 2iX,

as expected from the geometric definition [4, Equation (1.6)].

2.4.2. The first Chern class. The curvature form Ω is a basic 2-form (see below) so there
exist a 2-form Ω̄ ∈ Ω2(S2) such that Ω = π∗(Ω̄). We want to find Ω̄. First we compute

π∗dθ =dπ∗θ = d(2η) = 2dη,

π∗dφ =dπ∗φ = d(ξ1 − ξ2) = dξ1 − dξ2.

These expressions imply

π∗
(

1

4
sin θdθ ∧ dφ

)
=

1

4
sin 2η(2dη) ∧ (dξ1 − dξ2) = e1 ∧ e2

Hence, the 2-form

Ω̄ :=
i

2
sin θdθ ∧ dφ,

satisfies Ω = π∗(Ω̄). We can use this 2-form to construct a representative of the first
Chern class of this principal bundle ([17, Definition 3.35])

c1(π) :=

[
− Ω̄

2πi

]
∈ H2(S2;Z).

The integral of the first Chern class is ([3, Beispiel 3.10])∫
S2

(
− Ω̄

2πi

)
= −

∫
S2

sin θdθ ∧ dφ
4π

= −1.

In particular, this argument also shows that the Hopf map defines a non-trivial principal
bundle.
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2.5. The Hopf invariant. In this section we compute the so-called Hopf invariant of
the Hopf map π. We first recall the definition of the Hopf invariant H(f) associated to
any map f : S3 −→ S1 ([17, Section 5.6 (a)]). First choose a 2-form β̄ ∈ Ω2(S2) such
that ∫

S2

β̄ = 1.

Since df∗(β̄) = 0 and H2(S3;R) = 0 then there exists α ∈ Ω1(S3) such that f∗(β̄) = dα.
Define the Hopf invariant H(f) of f by the formula

H(f) :=

∫
S3

α ∧ dα ∈ R.

The following are two remarkable facts about H(f),

• It does not depend on the choice of β̄ or α, it just depends on f itself.
• Its value depends only on the homotopy class of f .

Let us now compute H(π). We have seen that∫
S2

sin θdθ ∧ dφ
4π

= 1.

From what we discussed in the last section we have

π∗
(

sin θdθ ∧ dφ
4π

)
=
e1 ∧ e2

π
.

On the other hand by (1.14) we have

− 1

2π
de3 =

e1 ∧ e2

π
.

Thus, using (1.11), we compute

H(π) =

∫
S3

(
− e

3

2π

)
∧
(
e1 ∧ e2

π

)
=

1

2π2

∫
S3

(−e1 ∧ e2 ∧ e3) =
1

2π2

∫
S3

volS3 = 1.

3. Hodge-de Rham operator

In this section we study the Hodge-de Rham operator, the associated Dirac operator of
the usual (left) Clifford structure on the exterior algebra. We implement the procedure
described in [7] to “push-down” the operator from S3 to S2 thorough π, obtaining an
operator whose first order part is simply the Hodge-de Rham operator on S2 and the
zero order term is an edomorphism which depends on the curvature of the Hopf bundle
with respect to the connection induced by the metric. At the end of this section we
modify this procedure to construct a transversally elliptic operator on S3 such that the
first order part of induced operator is again the Hodge-de Rham operator and with the
additional property that the zero order term anti-commutes with the associated chirality
operator ([19]).
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3.1. The Clifford module ∧T ∗S3 ⊗ C. Let us consider the complex vector bundle
∧T ∗S3 ⊗ C with the Hermitian metric induced from (1.9). For example,

〈dξ1, dξ1〉 = cos−2 η,

〈dξ2, dξ2〉 = sin−2 η,

〈dη, dη〉 =1,

〈dξ1 ∧ dξ2, dξ1 ∧ dξ2〉 = sin−2 η cos−2 η.

Associated with this metric and the orientation (1.11) we consider the Hodge star
operator

∗ : ∧kT ∗S3 ⊗ C −→ ∧3−kT ∗S3 ⊗ C,

defined by the relation

α ∧ ∗β = 〈α, β〉volS3 .

Let L2(S3,∧T ∗S3) be the Hilbert space completion of Ω∗(S3) with respect to the L2-inner
product

(α, β)L2(S3,∧T ∗S3) :=

∫
S3

〈α, β〉volS3 .(3.1)

The vector bundle ∧T ∗S3 ⊗ C carries a left Clifford bundle structure with left Clifford
multiplication c(α) := α ∧ −ια] for α ∈ Ω1(S3) ([4, Section 3.6],[15]). The Clifford
multiplication satisfies

c(α)c(β) + c(β)c(α) =− 2〈α, β〉, ∀α, β ∈ Ω1(S3),

c(α)† =− c(α) with respect to the L2-inner product,

c(α)ε =− εc(α),

where ε = (−1)k on k-forms is the Gauß-Bonnet grading. To each Clifford bundle
we can associate its corresponding chirality operator ([4, Lemma 3.17]). In this par-

ticular Clifford bundle the chirality operator ? : ∧kCT ∗S3 −→ ∧m−kC T ∗S3 is given by ([4,
Proposition 3.58])

? := (−1)3k+k(k−1)/2i2∗ = −ik(k+1) ∗ on k-forms.(3.2)

The chirality operator ? satisfies

?2 =1,

?† =?,(3.3)

?(α∧)? =− ια] for α ∈ T ∗S3.

Remark 3.1. The right Clifford multiplication, defined by ĉ(α) := α ∧+ια] , satisfies:

?c(α) = c(α)?,

?ĉ(α) = −ĉ(α) ? .
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The associated Dirac operator of this Clifford bundle is a first order elliptic differential
operator D defined on the space of differential forms Ω(S3) by D := d+d† ([4, Proposition
3.53]). Here d† denotes the formal adjoint of the exterior derivative d with respect to the
L2-inner product (3.1), which in this concrete case is d† = ?d?. The operator D = d+d†

is called the de Rham-Hodge operator. Let us describe some of the most important
properies of D:

• D is an elliptic first order differential operator, i.e. its principal symbols in
invertible outside the zero section. Recall that the principal symbol of d and d†

are ([4, Proposition 2.1])

σP (d)(x, ξ) =− iξ∧,(3.4)

σP (d†)(x, ξ) =iιξ] ,(3.5)

for (x, ξ) ∈ T ∗S3. Thus, the principal symbol of D is σP (D)(x, ξ) = −ic(ξ),
which is invertible for ξ 6= 0. Its inverse is just −ic(ξ)/‖ξ‖2.
• Since S3 is a closed manifold then D is a discrete essentially self-adjoint operator.
• As the dimension of S3 is odd, then D? = ?D.

3.2. S1-Invariant differential forms. The S1-action on S3 induces an action on the
vector bundle ∧T ∗S3 ⊗ C so that it becomes a S1-bundle, i.e. the action on ∧T ∗S3 ⊗ C
commutes with the Hopf map. The induced action on differential forms is just the
pullback map, i.e.

λ · β := (λ−1)∗β for λ ∈ S1 and β ∈ Ω(S3).(3.6)

Let X = −e3 = −(∂ξ1 + ∂ξ2) be the generating vector field of the S1 action. We call
the associated dual 1-form χ := −e3 the characteristic 1-form. Let us define the space
of S1-invariant forms by

Ω(S3)S
1

:= {β ∈ Ω(S3) | LXβ = 0}.

Since S1 is connected, β ∈ Ω(S3)S
1

if and only if λ · β = β for all λ ∈ S1. In addition,
we define the space of basic forms by

Ωbas(S
3) := {β ∈ Ω(S3) | LXβ = 0 and ιXβ = 0}.

An important characterization of basic forms is the following: A form β ∈ Ω(S3) is basic
if and only if there exists β̄ ∈ Ω(S2) such that β = π∗(β̄) ([17, Lemma 6.44]).

Remark 3.2 (Cohomology). Note that both (Ω(S3)S
1
, d) and (Ωbas(S

3), d) are sub-
complexes of the de Rham complex (Ω(S3), d). In particular, we can define the S1-
invariant cohomology H∗S1(S3) (since S1 is a compact Lie group there is an isomorphism

H∗S1(S3) ∼= H∗(S3;R)) and the basic cohomology H∗bas(S
3).

It is easy to verify, using the relation LXχ = 0, that the map

Ωk
bas(S

3)⊕ Ωk−1
bas (S3) // Ωk(S3)S

1

(β0, β1) � // β0 + β1 ∧ χ

(3.7)
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is an isomorphism. Moreover, there exists a short exact sequence of chain complexes
([23, Proposition 6.12])

0 // Ω∗bas(S
3) �
� // Ω∗(S3)S

1 ιX // Ω∗−1
bas (S3) // 0.

As a consequence of this decomposition, we will denote an S1-invariant form β0 + β1 ∧χ
as (

β0

β1

)
.

We define the transversal Hodge star operator ∗̄ : Ωk
bas(S

3) −→ Ω2−k
bas (S3) on the

space of basic forms by the relations ([23, Chapter 7])

∗̄β = − ∗ ((εβ) ∧ χ) and ∗ β = ∗̄β ∧ χ.(3.8)

From this definition we see that volS3 = ∗1 = ∗̄1 ∧ χ. On the other hand,

volS3 = −e1 ∧ e2 ∧ e3 = volS2 ∧ (−e3),

so ∗̄1 = e1∧e2. If we denote the Hodge star operator and volume form on S2 with respect
to the metric (2.4) by ∗S2 and volS2 respectively, then following diagram commutes

Ωk
bas(S

3)
∗̄ // Ω2−k

bas (S3)

Ωk(S2)

π∗

OO

∗S2 // Ω2−k(S2)

π∗

OO
.(3.9)

To see this observe,

π∗(ᾱ ∧ ∗S2 β̄) =π∗(〈ᾱ, β̄〉volS2) ∧ χ = 〈π∗(ᾱ), π∗(β̄)〉π∗(volS2)∧ = 〈π∗(ᾱ), π∗(β̄)〉∗̄1.

Similarly, we can also consider the transversal cirality operator ( [12, Section 5])

?̄ := (−1)k(k−1)/2i∗̄ = ik(k−1)+1∗̄.

3.3. Dirac Operator on S1-Invariant forms. As S1acts on S3 by orientation preserv-
ing isometries and since that the exterior derivative commutes with pullback we easily
see that the operator D commutes with the action (3.6), i.e. ∀g ∈ S1 and ∀β ∈ Ω(S3)

we have D(g · β) = g ·Dβ. Hence, we can restrict D to the space Ω(S3)S
1
. Our aim is

to compute this restriction operator with respect to the decomposition (3.7). This will
allow us to ”push-down” D to S2 via π (This is the main idea of the work of Brüning
and Heintze [7]).
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3.3.1. Decomposition of ?. First we want to compute ? in terms of the decomposition
(3.7). We begin calculating for a basic differential form β ∈ Ωk

bas(S
3),

?β = −ik(k+1) ∗ β = −ik(k+1)∗̄β ∧ χ = i1+2kik(k−1)+1∗̄β ∧ χ = (iε?̄β) ∧ χ.

If we apply last formula to iε?̄β we obtain

?(iε?̄β) = −β ∧ χ,

so using the relation?2 = 1 we get

?2(iε?̄β) = (iε?̄β) = − ? (β ∧ χ).

Thus, we conclude that with respect to the decomposition (3.7) we can express

(3.10) ?

∣∣∣∣
Ω(S3)S1

=

(
0 −iε?̄
iε?̄ 0

)
.

Note in particular that since ε?̄ = ?̄ε,

(iε?̄)† = −i?̄ε = −iε?̄.

3.3.2. Decomposition of d. Recall that the space of basic differential forms defines a
complex, thus the following diagram commutes:

Ωk
bas(S

3)
d // Ωk+1

bas (S3)

Ωk(S2)

π∗

OO

dS2 // Ωk+1(S2).

π∗

OO
.(3.11)

Let us define the 2-form

ϕ := dχ = 2e1 ∧ e2 = −iΩ.

For β0 + β1 ∧ χ, with β0, β1 ∈ Ωbas(S
3) we calculate

d(β0 + β1 ∧ χ) =dβ0 + (dβ1) ∧ χ+ (εβ1) ∧ dχ
=dβ0 + εϕ ∧ β1 + (dβ1) ∧ χ.

Hence, we can write

d

∣∣∣∣
Ω(S3)S1

=

(
d εϕ∧
0 d

)
.(3.12)
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We use (3.10) to compute similarly for d† = ?d? ,

d†
∣∣∣∣
Ω(M0)S1

=

(
0 −iε?̄
iε?̄ 0

)(
d εϕ∧
0 d

)(
0 −iε?̄
iε?̄ 0

)
=

(
0 −iε?̄
iε?̄ 0

)(
iϕ ∧ ?̄ −idε?̄
idε?̄ 0

)
=

(
0 −iε?̄
iε?̄ 0

)(
iϕ ∧ ?̄ iεd?̄
−iεd?̄ 0

)
=

(
−?̄d?̄ 0

−?̄(εϕ∧)?̄ −?̄d?̄

)
.

Thus, we conclude that under the decomposition (3.7) of Ω(S3)S
1

we have

S := D

∣∣∣∣
Ω(S3)S1

=

(
d− ?̄d?̄ ε(ϕ∧)
−ε?̄(ϕ∧)?̄ d− ?̄d?̄

)
.(3.13)

From [7, Lemma 2.2] we know that the operator S is still essentially self-adjoint. Since
the Hodge-de Rham operator DS2 on S2 is given by

DS2 = dS2 + d†
S2 = dS2 − ?S2dS2?S2 ,

we see from (3.9) and (3.11) that S induces a self-adjoint operator ([7, Theorem 1.3])
defined sections of ∧T ∗S2 ⊗ C2 by the formula

T :=

(
DS2 ε(ϕ̄∧)

−ε ?S2 (ϕ̄∧)?S2 DS2

)
where ϕ = π∗(ϕ̄). This 2-form is explicitly given by

ϕ̄ :=
1

2
sin θdθ ∧ dφ.

Remark 3.3. We now give an interpretation to the operator −?S2 (ϕ̄∧)?S2 . Recall that
in S2 we have ?S2(α∧)?S2 = ια] and (α∧)† = ια] (with respect to the L2-inner product
defined by the volume form volS2) for α ∈ T ∗S2. We can use these equations to compute

?S2(e1 ∧ e2∧)?S2 = ιe1 ?
2
S2 ιe2 = −ιe2ιe1 = −(e1 ∧ e2∧)†.

This shows the relation − ?S2 (ϕ̄∧)?S2 = (ϕ̄∧)†, which allows us write

T =

(
DS2 ε(ϕ̄∧)
ε(ϕ̄∧)† DS2

)
.

Remark 3.4 (An Involution). Since the dimension of S2 is even, the operator D satisfies
DS2 ?S2 + ?S2 DS2 = 0. Moreover, it is clear that ?S2(ϕ̄∧) + (ϕ̄)† ∧ ?S2 = 0, therefore

(3.14) Tϑ+ ϑT = 0

where ϑ is the self-adjoint involution

ϑ :=

(
0 ?S2

?S2 0

)
.
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3.4. A transversally elliptic Dirac-type operator. Note that the induced operator
T from (3.14) acts on two copies of Ω(S2) ⊗ C instead of one. We will like to modify
the above construction such that the induced operator acts on Ω(S2)⊗C and such that
the zero oder part anti-commutes with chirality operator ?S2 (why? Think about the
index theorem). Motivated by the Operator S from (3.13) we define the operator ([20,
Proposition 4.27])

B := c(χ)d− d†c(χ).

Clearly B is a self-adjoint first order differential operator. Using (3.4) we can compute
its principal symbol

σP (B)(x, ξ) =ic(χ)ξ ∧+iιξ]c(χ)

=ic(χ)ξ ∧+i〈χ, ξ〉 − ic(χ)ιξ]

=ic(χ)c(ξ) + i〈χ, ξ〉

for (x, ξ) ∈ T ∗S3. Note that on one hand σP (B)(x, χx) = 0 and on the other if 〈χ, ξ〉 = 0
then σP (B)(x, ξ) = ic(χ)c(ξ). For the later case (ic(χ)c(ξ))2 = ‖ξ‖2 so we see that B is
a transversally elliptic operator.

This operator, which is defined in terms of d and the Clifford multiplication c(χ), also
commutes with the S1-action (3.6). We now find an expression for B when restricted to
S1-invariant forms with respect to the decomposition (3.7). First note that with respect
this decomposition we have

c(χ)

∣∣∣∣
Ω(S3)S

1
=

(
0 −ε
ε 0

)
.

Using (3.12) we compute

c(χ)d

∣∣∣∣
Ω(S3)S1

=

(
0 −ε
ε 0

)(
d εϕ∧
0 d

)
=

(
0 dε
−dε ϕ̄∧

)
.

Similarly

d†c(χ)

∣∣∣∣
Ω(S3)S1

=

(
−?̄d?̄ 0

−ε?̄(ϕ∧)?̄ −?̄d?̄

)(
0 −ε
ε 0

)
=

(
0 ?̄d?̄ε

−?̄d?̄ε ?̄(ϕ∧)?̄

)
.

Hence

B

∣∣∣∣
Ω(S3)S1

=

(
0 (d− ?̄d?̄)ε

−(d− ?̄d?̄)ε (ϕ ∧ −?̄(ϕ∧)?̄)

)
.(3.15)

Observe that operator B satisfies Bε = εB so it can be decomposed as B = Bev⊕Bodd

where Bev/odd : Ωev/odd(S3) −→ Ωev/odd(S3). Each component of this operator obviously

commutes with the S1-action, so we can consider the operator

Bev : Ωev(S3)S
1 −→ Ωev(S3)S

1
.
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Consider the unitary transformations ([8, Section 5])

ψk : Ωk−1(S2)⊕ Ωk(S2) // Ωk(S3)S
1

(βk−1, βk)
� // π∗(βk) + π∗(βk−1) ∧ χ

.

for k = 0, 1, 2, 3 (here Ω−1(S2) := {0}). Using the notation βk ∈ Ωk(S2) we define two
further unitary transformations

ψev : Ω(S2) // Ωev(S3)S
1

(β0, β1, β2) � // (ψ0(0, β0), ψ2(β1, β2)),

ψodd : Ω(S2) // Ωodd(S3)S
1

(β0, β1, β2) � // ψ1(β0, β1).

We want to compute the operator DS2
:= ψevBψ

−1
odd : Ω(S2) −→ Ω(S2), i.e. the

operator D that fits into the commutative diagram

Ωev(S3)S
1 Bev // Ωodd(S3)S

1

Ω(S2)

ψodd

OO

DS2 // Ω(S2).

ψev

OO

If we define the endomorphism

ĉ(ϕ̄) :=ϕ̄ ∧+(ϕ̄∧)† = ϕ̄ ∧ −?̄(ϕ̄∧)?̄,

which is a kind of right Clifford multiplication by ϕ̄, we see from (3.15) that

DS2 = DS2 + ĉ(ϕ̄).(3.16)

It is important to see that since ĉ(ϕ̄)?̄+ ?̄ĉ(ϕ̄) = 0, then

DS2 ?̄+ ?̄DS2 = 0.

This means that we have found an induced operator DS2 which is of Dirac-Schrödinger
type, whose first order part is the Hodge-de Rham operator DS2 on S2 and such that it
anti-commutes with ?S2 ([20, Theorem 4.28]). Hence we can decompose DS2 with respect
to ?S2 as

DS2 =

(
0 DS2,+

DS2,− 0

)
.

Observe that ind(DS2,+) = 0 by the signature theorem ([4, Theorem 4.8]), so therefore
ind(DS2,+) = ind(DS2,+) = 0 since the index just depends on the principal symbol.

As an important remark, note that even though in this concrete example the index
vanishes, when one goes to higher dimensions the induced operator from B will produce
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non-trivial indices. Moreover, the action need not be free since one can consider the
action on the principal orbit. This procedure, inspired in [7], allow us to produce from
the operator B self-adjoint operators on singular spaces arising from S1-actions which
anti-commute with the signature grading ([19], [20]).

4. Spin-Dirac operator

In this section we want to proceed similarly as we did before but in the context of
the spin-Dirac operator. First we will show how to construct the spinor bundle and the
spin-Dirac operator on S2 and S3. We also show how they are related trough the Hopf
map when resctricted to S1-invariant spinors. As before, we do not aim to explain the
theory in detail but rather focus on the computations. Standard references on this topic
are [4], [15], [18],[21] and [22] among many others.

4.1. The spin Dirac operator for S2.

4.1.1. Spin strucrure. We begin by giving an explicit construction of the unique spin
structure on S2. First recall that Spin(2) = SO(2) = S1 and that there is a short exact
sequence of groups

0 // Z/2Z // S1 % // S1 // 0,

where

% : S1 // S1

λ � // λ2.

Let us denote by πso : SO(S2) −→ S2 the oriented frame bundle of S2, which is an
SO(2)-principal bundle. A spin structure on S2 consists of a principal Spin(2)-bundle
πspin : Spin(S2) −→ S2 and a 2-fold covering map q : Spin(S2) −→ SO(S2) such that
the following diagram commutes

Spin(S2)× S1

q×%

��

// Spin(S2)

q

��

πspin

))
S2

SO(S2)× S1 // SO(S2)

πso

55

(4.1)

A topological condition for the existence of spin structures is the vanishing of the sec-
ond Stiefel-Whitney class w2(TS2) ∈ H2(S2;Z/2Z) ([15, Theorem II.1.7]). This charac-
teristic class is the Z/2Z-reduction of the Euler class of TS2 ([16]). By the Gauß-Bonnet
theorem we know that the integral of this Euler class equals the Euler characteristic
χ(S2) = 2, which modulo Z/2Z is zero. This shows that S2 is a spin manifold. More-
over, the spin structures are classified by the group H1(S2;Z/2Z) = 0, so we conclude
that S2 has only one spin structure. This result is actually valid for all spheres.
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Our first objective is to show that the Hopf bundle defines the unique spin structure on
S2. We begin by describing the frame bundle SO(S2). We claim that SO(S2) = SO(3).
More precisely consider the action of SO(3) on S2 by rotations. Since this action is
transitive and the isotropy group of any point on the sphere is SO(2) we see that
SO(3)/SO(2) ∼= S2 and we have a SO(2)-principal bundle SO(3) −→ S2. On the
other hand let us see how can a rotation R ∈ SO(3) define an frame for some point
in the sphere. The rotation R is characterized by the rotation axis, which can be de-
fined trough a unit vector, and the rotation angle. The unite vector defined the point on
the sphere and the angle defined the orthonormal basis on the tangent space of this point.

Now that we have described the frame bundle we will see how the Hopf fibration
fits into the diagram (4.1). Recall that we can identify SO(3) ∼= RP 3 and denote by
q : S3 −→ RP 3 the antipodal map, i.e.

q : S3 // RP 3

(z0, z1) � // [z0, z1],

where [z0, z1] = [−z0,−z1]. Note that the Hopf map (2.1) satisfies π(z0, z1) = π(−z0,−z1)
so it defines a map πso : RP 3 −→ S2. However, the principal structure action is given
by the S1-action λ · [z0, z1] := [λ1/2z0, λ

1/2z1]. Note that the sign of the square root is
irrelevant since the coordinates on RP 3 are invariant under a change of sign. Hence we
have constructed the commutative diagram

S3 × S1

q×%

��

// S3

q

��

π

))
S2.

RP 3 × S1 // RP 3
πso

55

From the diagram (4.1) we see how the Hopf fibration defines the unique spin structure
on S2.

4.1.2. The spinor bundle. Now that we have studied the spin structure explicitly we will
construct the spinor bundle Σ(S2) as an associated bundle Σ(S2) = Spin(S2) ×ρ2 Σ2

where ρ2 : S1 −→ Aut(Σ2) is the spin representation and Σ2 = C2 is the spinor space.
In particular we sill show that it is a trivial rank 2 complex vector bundle.

To begin with we describe the spin representation of the Clifford algebra Cl(2) on
the spinor vector space Σ2 = C2. To to so its enough to describe the action on basis
elements. Recall the definition of the Pauli matrices

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.
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These matrices satisfy the relations

σ†j =σj ,

σ2
j =1,

σ1σ2 =iσ3,

σjσk + σkσj =2δjk for j = 1, 2, 3.

Let {v1, v2} be the standard orthonormal basis of R2, we define the Clifford action
ρ2(vj) := −iσj for j = 1, 2. It follows that

ρ2(vj)ρ2(vk) + ρ2(vk)ρ2(vj) = −2δjk.

We now want to study the restriction of this representation to Spin(2) ⊂ Cl(2). Every
element of Spin(2) can be written as

cos t+ sin tv1v2 = −(sin(t/2)v1 + cos(t/2)v2)(cos(t/2)v1 + sin(t/2)v2),

for t ∈ [0, 2π], so

ρ2(cos t+ sin tv1v2) =

(
1 0
0 1

)
cos t+

(
−i 0
0 i

)
sin t =

(
e−it 0

0 eit

)
.

This shows that the spin representation restricted to Spin(2) = S1 is given by

(4.2) ρ2 : S1 // Aut(Σ2)

z � //
(
z̄ 0
0 z

)
.

We now compute the transition functions of the spinor bundle Σ(S2) = Spin(S2)×ρ2 Σ2.
These are obtained by composing the transition functions of the Hopf bundle with ρ2,
i.e. for π(z0, z1) ∈ UN ∩ US we have

ρ2(π(z0, z1)) = ρ2

(
z0

z1

)
=

(
z0/z1 0

0 z̄0/z̄1

)
.

We will now explain how to see that the spinor bundle Σ(S2) is trivial. Our argu-
ment goes into the direction of clutching functions in K-theory. Let VectkC(S2) denote
the monoid of isomorphims classes of complex vector bundles of rank k over S2. An
important result in the context of classification of vector bundles states that the map
Φ : [S1, GL(k,C)] −→ VectkC(S2) defined by the transition functions (clutching func-
tions) is a bijection ([13, Proposition1.11]). Moreover, as groups we have an isomorphism
[S1, GL(k,C)] ∼= [S1, U(k,C)] ∼= Z, the first one given by the Gram-Schmidt orthogonal-
ization process and the second one. One also has that the map det : [S1, U(k,C)] −→ S1

is well defined and the degree of this map deg ◦det : [S1, U(k,C)] −→ Z is actually
an isomorphism. This means that the degree of the determinant of the clutching func-
tions characterizes the isomorphism class of the associated vector bundle. This argument
shows that since

det

(
z̄ 0
0 z

)
= z̄z = 1,
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for z ∈ S1, we see that the associated bundle must be isomorphic to the trivial bundle.
One can actually define an explicit homotopy ([2, Section 2.4]) for t ∈ [0, π/2],

γ(t) :=

(
z̄ 0
0 1

)(
cos t sin t
− sin t cos t

)(
1 0
0 z

)(
cos t − sin t
sin t cos t

)
.

Observe that det(γ(t)) = 1 for all t ∈ [0, π/2] and

γ(0) =

(
z̄ 0
0 z

)
and γ(π/2) =

(
1 0
0 1

)
.

Hence the sections of Σ(S2), called spinors, can be regarded as functions ψ : S2 −→ C2.

One can also show the triviality of Σ(S2) by describing it in term of the exterior bundle
and comparing how the sections transform. We refer to [24, Section A.2].

4.1.3. The spin-Dirac operator. We now want to construct the Dirac operator /DS2(r)

associated to the Clifford bundle Σ(S2). Here we consider the 2-sphere of radius r > 0
in view of the fact that we will need it for r = 1/2 when we study the induced spin-
Dirac operator of the Hopf fibration. The corresponding spin connection ∇Σ can be
computed using the component of the connection 1-form (1.5) as [15, Theorem 4.14]

∇Σ =
1

2
ω21 ⊗ ρ2(e1)ρ2(e2) = −1

2
ω12 ⊗ σ2σ1 = − i

2

cot θ

r
e2 ⊗ σ3.

The corresponding Dirac operator is then

/DS2(r) := ρ2(e1)∇Σ
e1 + ρ2(e2)∇Σ

e2 .

From the explicit expression of the spin connection he have

−iσ1∇Σ
e1 =− iσ1e1,

−iσ2∇Σ
e2 =− iσ2e2 −

1

2

cot θ

r
σ2σ3 = −iσ2e2 −

i

2

cot θ

r
σ1,

so he obtain

/DS2(r) = −iσ1∇Σ
e1 − iσ2∇Σ

e2 = −iσ1

(
e1 +

1

2

cot θ

r

)
− iσ2e2.(4.3)

In terms of the coordinate vector fields we can write

/DS2(r) = −iσ1

(
1

r
∂θ +

1

2

cot θ

r

)
− iσ2

sin θ
∂φ.

Note from the relation for f1, f2 ∈ C∞(S2),

d

dθ
(f1f2 sin θ) = (f ′1f2 + f1f

′
2 + f1f2 cot θ) sin θ,

that /DS2(r) satisfies∫
S2

〈 /DS2ψ1, ψ2〉C2r2 sin θdθ ∧ dφ =

∫
S2

〈ψ1, /DS2ψ2〉C2r2 sin θdθ ∧ dφ,
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i.e. /DS2(r) is symmetric, and since S2(r) is closed then /DS2(r) is also essentially self-
adjoint.

The chirality operator of associated to the spinor bundle Σ(S2) is ([4, Lemma 3.17])

Γ = i(−iσ1)(−iσ2) = σ3.(4.4)

Since the dimension of S2 is even we can verify that /DS2(r)σ3 + σ3 /DS2(r) = 0.

4.1.4. Tautological bundle. In this section we are going to give an alternative description
of the spinor bundle Σ(S2) and in particular to the subbundles Σ±(S2) ([3, Beispiel
2.11][24, Section A.2]). First let us recall how to identify S2 with CP 1 ([3, Beispiel 2.7]).
Define locally two functions

z(θ, φ) :=eiφ tan(θ/2) for x(θ, φ) ∈ UN ,(4.5)

w(θ, φ) :=e−iφ cot(θ/2) for x(θ, φ) ∈ US(4.6)

Is it easy to see that (UN , z) and (US , w) define two compatible charts on S2 with
coordinate transformation z = 1/w on UN ∩ US . We now construct a diffeomorphism
% : S2 −→ CP 1 by defining it locally as (see (2.3))

%N : UN // CP 1

x(θ, φ) � // [z(θ, φ) : 1],

%S : US // CP 1

x(θ, φ) � // [1 : w(θ, φ)].

Here the homogeneous coordinates satisfy [z : w] = [µz : µw] for every µ ∈ C − {0}.
Observe that % is defined globally since for x(θ, φ) ∈ UN ∩ US we have

%N (x(θ, φ)) = [z(θ, φ) : 1] = [1/w(θ, φ) : 1] = [1 : w(θ, φ)] = %S(x(θ, φ)).

We now define the tautological line bundle Θ : L −→ CP 1 locally as

LN := {([z(θ, φ) : 1], µz(θ, φ)) ∈ CP 1 × C | x(θ, φ) ∈ UN , µ ∈ C},
LS := {([1 : z(θ, φ)], µw(θ, φ)) ∈ CP 1 × C | x(θ, φ) ∈ US , µ ∈ C}.

with local trivializations

ψN : Θ−1(UN ) // UN × C

([z(θ, φ) : 1], µz(θ, φ)) � // (x(θ, φ), µ)

ψS : Θ−1(US) // US × C

([1 : w(θ, φ)], µw(θ, φ)) � // (x(θ, φ), µ)
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We now compute the transition function explicitly. For x(θ, φ) ∈ UN ∩ US we compute

ψN ◦ ψ−1
S (x(θ, φ), µ) =ψN ([1 : w(θ, φ)], µw(θ, φ))

=ψN ([1/w(θ, φ) : 1], (w(θ, φ)µ)1/w(θ, φ))

=ψN ([z(θ, φ) : 1], ((1/z(θ, φ))µ)z(θ, φ))

=(x(θ, φ), (1/z(θ, φ))µ)).

Note that for x(θ, φ) ∈ UN∩US we must have θ = π/2, then (4.5) implies that z(φ, π/2) ∈
S1. We conclude then that transition function of the line bundle L with respect to the
above trivialization is

hNS(z) = 1/z = z̄.

Hence, in view of (4.2) and (4.4), we see that as complex line bundles we have L ∼=
Σ+(S2), L∗ ∼= Σ−(S2) and L ⊕ L∗ ∼= Σ(S2). From the later relation we see that

c(Σ(S2)) = c(L ⊕ L∗) = c1(L) + c1(L∗) = c1(L)− c1(L) = 0

as we expected since we have see that Σ(S2) is trivial.

4.2. The spin-Dirac operator for S3. In this section we compute the spin-Dirac op-
erator on S3 with respect to the coordinates (1.13). In particular we will decompose it
as an “horizontal” part which can be interpreted as the spinpin-Dirac operator on S2, a
“vertical” part and a zero order term ([1]). Hitchin computed in [14, Proposition 3.1] an
explicit expression for the spin-Dirac operator on S3 for more general metrics.

Since S3 ∼= SU(2) has a Lie group structure it has trivial tangent bundle parallelized
by a basis of its Lie algebra. This parallelization can be use to paralellize the spinor
bundle ([14, Section 3.1]), i.e. Σ(S3) = S3 × Σ2.

We now go directly to the computation of the spin-Dirac operator. From (1.15) we
see that the associate spin connection with respect to the basis (1.13) is ([15, Theorem
4.14])

∇Σ =− 1

2
ω12 ⊗ σ2σ1 −

1

2
ω13 ⊗ σ3σ1 −

1

2
ω23 ⊗ σ3σ2

=− 1

2
(−2 cot 2ηe2 + e3)⊗ (−iσ3)− 1

2
e2 ⊗ (iσ2)− 1

2
(−e1)⊗ (−iσ1)

=− i

2
(2 cot 2ηe2 − e3)⊗ σ3 −

i

2
e2 ⊗ σ2 −

i

2
e1 ⊗ σ1.

As before the Dirac operator is given by

/DS3 = −iσ1∇Σ
e1 − iσ2∇Σ

e2 − iσ3∇Σ
e3 .
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We compute separately each term

−iσ1∇Σ
e1 =− iσ1e1 −

1

2
,

−iσ2∇Σ
e2 =− iσ2e2 − i cot 2ησ1 −

1

2
,

−iσ3∇Σ
e3 =− iσ3e3 +

1

2
,

and conclude that

/DS3 = −iσ1(e1 + cot 2η)− iσ2e2 − iσ3e3 −
1

2
.(4.7)

The chirality operator ΓS3 of the spinor bundle is ([4, Lemma 3.17])

ΓS3 = −i2c(e1)c(e2)c(e3) = (−iσ1)(−iσ2)(−iσ3) = −(iσ3)(−iσ3) = −1.

Since the dimension of S3 is odd we verify that /DS3Γ = Γ /DS3 .

Now we want to study the construction of [7] for the free S1-action on S3 which defines
the Hopf fibration. First of all note that since the S1-action preserves the orientation
and the metric then we can lift it to the principal frame bundle SO(S3) −→ S3. Since
S2 is a spin manifold, the action on SO(S3) lifts to the spin bundle Spin(S3) −→ S3, i.e.
the action is projectable ([1, Section 4], [5, Proposition 2.2]). Moreover, this action is
inherited by the spinor bundle Σ(S3) such that it becomes and S1-vector bundle. One
can also show that the spin-Dirac operator DS3 commutes with the S1-action on spinors
given by

(λ · ψ)(x) := ψ(λ−1 · x),(4.8)

for x ∈ S3 ([22, Section 19]). Recall that X = −e3 denotes the generating vector field of
the S1-action, then it is easy to see the space of S1-invariant spinors is with respect to
the action (4.8) is

Γ(S3,Σ(S3))S
1

= {ψ ∈ Γ(S3,Σ(S3)) | LXψ = 0},(4.9)

where the Lie derivative LXψ is defined by [4, Equation (1.2)]. Nevertheless, in this case
this Lie derivative is just the Lie derivative each components. Is it easy to see that we
can identify the spaces

Γ(S3,Σ(S3))S
1

= π∗Γ(S2,Σ(S2)),(4.10)

that means that for each ψ ∈ Γ(S3,Σ(S3))S
1

there exists a unique ψ̄ ∈ Γ(S2,Σ(S2)) such
that ψ(x) = ψ̄(π(x)) for all x ∈ S3.

Observe now from (4.3), with r = 1/2, (4.7), (4.9), and (4.10) that the spin-Dirac
operator restricted to the space of S1-invariant sections is

/DS3

∣∣∣∣
Γ(S3,Σ(S3))S1

= π∗ /DS2 −
1

2
.(4.11)
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Remark 4.1. The decomposition (4.7) agrees with the decomposition derived in the
proof of [1, Theorem 4.1]. They sow in a more general case how to decompose the spin-
Dirac operator as a sum of a vertical part, an horizontal part and a zero order term.
This last term is constructed from the connection form ω = −ie3 and the curvature
Ω = 2ie1 ∧ e2 of the principal S1-bundle (Section 2.4). Using the fact that ω(ie3) = 1,
the concrete expression derived in [1, pg. 240] is

−1

4
c(ie3)(2ic(e1)c(e2)) = −1

4
i(−iσ3)2i(−iσ1)(−iσ2) =

1

2
σ3(iσ1σ2) =

1

2
σ3(−σ3) = −1

2
,

which coincides with (4.7).

Finally we see that form (4.11) that the operator induced on the spinor bundle of S2

is

/T := /DS2 −
1

2
.(4.12)

Note however that the potential term in (4.12) is just multiplication by −1/2 and it
does not anti-commute with the chirality operator (4.4).
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