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Example: What is a semi-free action?

Let S1 act on M = S2 ⊂ R3 by rotations around the z-axis.
I MS1

:= {N ,S} fixed point set.
I On the principal orbit M0 := S2 −MS1

, the action is free.

z

N

S
For a semi-free action the isotropy groups S1

x := {g ∈ S1 | gx = x}
must be either {1} or S1 for all x ∈ S2.



Example: A S1-semi-free quotient
As the action on M0 is free, the quotient space M0/S

1 = (0, π) =: I is
a smooth manifold.

z

M0 := S2 −MS1

S1

∼= ( )

0 π

I Equip S2 with the round metric gTS
2

= dθ2 + sin2 θdφ2.
I The quotient metric gTI := dθ2 is incomplete.
I The Hodge - de Rham operator

DI :=

(
0 −∂θ
∂θ 0

)
defined on Ωc(I), is not essentially self-adjoint in L2(∧∗I).
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Lott’s S1-equivariant signature
I (M, gTM ): 4k + 1-dimensional closed oriented Riemannian

manifold on which S1 acts by orientation preserving isometries.
I MS1

: fixed point set and M0 the principal orbit.
I V : generating vector field of the action.
I α := V [/‖V ‖2 ∈ Ω1(M0) satisfies α(V ) = 1.

Consider the differential complex

Ωbas,c(M0) := {ω ∈ Ωc(M0) | LV ω = 0 and ιV ω = 0}.

Define σS1(M) to be the signature of the symmetric quadratic form,

H2k
bas,c(M0)×H2k

bas,c(M0) // R

([ω], [ω′]) � //
∫
M

α ∧ ω ∧ ω′.

I It does not depend on the Riemannian metric.
I It is invariant under S1-homotopy equivalences.
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σS1(M) formula for semi-free actions

Theorem (Lott, 00’)
Suppose S1 acts effectively and semi-freely on M , then

σS1(M) =

∫
M0/S1

L(T (M0/S
1), gT (M0/S

1)) + η(MS1

).

If the codimension of MS1

in M is divisible by four we call M/S1 a
Witt space and

I η(MS1

) = 0.
I L(T (M0/S

1), gT (M0/S
1)) represents the homology L-class of

M/S1.
I σS1(M) equals the intersection homology signature of M/S1.
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Strategy of Lott’s proof
I F ⊂MS1

: connected closed 4k − 2N − 1 dimensional manifold.
I Let NF −→ F be the normal bundle of F .
I SNF/S1 is the total space of a Riemannian CPN -fiber bundle F .
I Model M/S1 as the mapping cylinder C(πF : F −→ F ).
I For r > 0 small enough σS1(M) = σ(M/S1 −Nr(F )).
I Study the limit of the APS signature theorem as r −→ 0.

I Use Dai’s formula for the adiabatic limit of the eta invariant.
I Prove that the form η̃ and Dai’s tau invariant τF vanish.

CPN

F

F

dr2 ⊕ gTHF ⊕ r2gTV F

r

0

1

Zr := M/S1 −Nr(F )

Nr(F )
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Does there exist an operator whose index is σS1(M)?
Natural Candidate: the signature operator on M0/S1

I Consider the de Rham complex:

· · · // Ωj−1
c (M0/S

1)
d // Ωjc(M0/S

1)
d //

d†

``
Ωj+1
c (M0/S

1)

d†

``
// · · ·

I D := d+ d†. Domain of definition? Ωc(M0/S
1).

I ? : ∧jT ∗(M0/S
1) −→ ∧4k−jT ∗(M0/S

1) chirality operator.

?2 = 1 ?† = ? d† = − ? d?

I In particular, Ω(M0/S
1) = Ω+(M0/S

1)⊕ Ω−(M0/S
1) and

?D +D? = 0

I ind(D+) =? where D+ : Ω+
c (M0/S

1) −→ Ω−c (M0/S
1).



Does there exist an operator whose index is σS1(M)?
Natural Candidate: the signature operator on M0/S1

I Consider the de Rham complex:

· · · // Ωj−1
c (M0/S

1)
d // Ωjc(M0/S

1)
d //

d†

``
Ωj+1
c (M0/S

1)

d†

``
// · · ·

I D := d+ d†. Domain of definition? Ωc(M0/S
1).

I ? : ∧jT ∗(M0/S
1) −→ ∧4k−jT ∗(M0/S

1) chirality operator.

?2 = 1 ?† = ? d† = − ? d?

I In particular, Ω(M0/S
1) = Ω+(M0/S

1)⊕ Ω−(M0/S
1) and

?D +D? = 0

I ind(D+) =? where D+ : Ω+
c (M0/S

1) −→ Ω−c (M0/S
1).



Does there exist an operator whose index is σS1(M)?
Natural Candidate: the signature operator on M0/S1

I Consider the de Rham complex:

· · · // Ωj−1
c (M0/S

1)
d // Ωjc(M0/S

1)
d //

d†

``
Ωj+1
c (M0/S

1)

d†

``
// · · ·

I D := d+ d†. Domain of definition? Ωc(M0/S
1).

I ? : ∧jT ∗(M0/S
1) −→ ∧4k−jT ∗(M0/S

1) chirality operator.

?2 = 1 ?† = ? d† = − ? d?

I In particular, Ω(M0/S
1) = Ω+(M0/S

1)⊕ Ω−(M0/S
1) and

?D +D? = 0

I ind(D+) =? where D+ : Ω+
c (M0/S

1) −→ Ω−c (M0/S
1).



Does there exist an operator whose index is σS1(M)?
Natural Candidate: the signature operator on M0/S1

I Consider the de Rham complex:

· · · // Ωj−1
c (M0/S

1)
d // Ωjc(M0/S

1)
d //

d†

``
Ωj+1
c (M0/S

1)

d†

``
// · · ·

I D := d+ d†. Domain of definition? Ωc(M0/S
1).

I ? : ∧jT ∗(M0/S
1) −→ ∧4k−jT ∗(M0/S

1) chirality operator.

?2 = 1 ?† = ? d† = − ? d?

I In particular, Ω(M0/S
1) = Ω+(M0/S

1)⊕ Ω−(M0/S
1) and

?D +D? = 0

I ind(D+) =? where D+ : Ω+
c (M0/S

1) −→ Ω−c (M0/S
1).



Does there exist an operator whose index is σS1(M)?
Natural Candidate: the signature operator on M0/S1

I Consider the de Rham complex:

· · · // Ωj−1
c (M0/S

1)
d // Ωjc(M0/S

1)
d //

d†

``
Ωj+1
c (M0/S

1)

d†

``
// · · ·

I D := d+ d†. Domain of definition? Ωc(M0/S
1).

I ? : ∧jT ∗(M0/S
1) −→ ∧4k−jT ∗(M0/S

1) chirality operator.

?2 = 1 ?† = ? d† = − ? d?

I In particular, Ω(M0/S
1) = Ω+(M0/S

1)⊕ Ω−(M0/S
1) and

?D +D? = 0

I ind(D+) =? where D+ : Ω+
c (M0/S

1) −→ Ω−c (M0/S
1).



Local description of the signature operator
Close to the fixed point set:

D = γ

(
∂

∂r
+ F⊗A(r)

)
=⇒ D+ =

∂

∂r
+A(r),

where A(r) := AH(r) +
1

r
AV and AV := A0V + ν.

I A0V is the odd siganture operator on TV F .
I ν is the degree counting operator ν := vd.−N .

Theorem (Brüning & Seeley)
The operator D is essentially self-adjoint if and only if |AV | ≥ 1/2.

I It is enough: spec(AV ) on vertical harmonic forms (CPN fiber):

AV
∣∣
H2j = 0 + ν

∣∣
H2j = 2j −N

I If N odd (Witt case) this is the case.
I If N even (non-Witt case) =⇒ need boundary conditions.
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Index formula for the Witt case (Brüning 09’)

CPN

F

r

0

1

F
Zr

Ur := Nr(F )

Use the Dirac-Systems formalism (Ballmann, Brüning & Carron, 08’).

I In particular the gluing index formula:

ind(D+) = ind
(
D+
Zr,Q<(A(r))(H)

)
+ ind

(
D+
Ur,Q≥(A(r))(H)

)
.



Sketch of index computation

1. Prove that for r > 0 small enough ind
(
D+
Ur,Q≥(A(r))(H)

)
= 0.

For the proof we require AH(r)AV +AVAH(r) to be a first order
vertical differential operator.

2. Take the limit r −→ 0+ of the signature of the manifold with
boundary Zr.
Note however that ind

(
D+
Zr,Q<(A(r))(H)

)
does not have the right

APS boundary condition, Q<(A0(r))(H), where

A0(r) = A(r)− ν

r
.

The correction term is, as r −→ 0+,

ind(Q<(A(r))(H), Q≥(A0(r))(H)) =σ(2)(Tπ) + dim(kerA0(r))/2

=τF + dim(kerA0(r))/2

= dim(kerA0(r))/2.

The second equality is a result of Cheeger and Dai.
3. Finally,

lim
r→0+

ind
(
D+
Zr,Q<(A0(r))(H)

)
+

1

2
dim(kerA0(r)) = σS1(M)
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An operator independently of the Witt condition?
Motivation: Brüning & Heintze Construction

I Let G be a compact Lie group and (E, hE) be a G-equivariant
Hermitian vector bundle over an oriented Riemannian manifold
(X, gTX).

I Let P : L2(X,E) −→ L2(X,E) be a self-adjoint operator which
commutes with the G-action.

Theorem (Brüning & Heintze, 79’)

L2(X,E)G

Φ

��

P |Dom(P )∩L2(X,E)G // L2(X,E)G

Φ

��
L2(X0/G, F, h)

T // L2(X0/G, F, h)
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Which self-adjoint operator to consider?
Main Idea: Push down an operator from M to M0/S1.

A first candidate is DM = dM + d†M acting on sections of E := ∧T ∗M .

I F = ∧T ∗(M0/S
1)⊕ ∧T ∗(M0/S

1).
I ω ∈ Ωc(M0)S

1 ⇒ ω0 + ω1 ∧ χ where ω0, ω1 ∈ Ωbas,c(M0) and
χ := ‖V ‖α is the characteristic form.

Let κ := −d log(‖V ‖) ∈ Ω1
bas(M0) be the mean curvature form.

Using Rummler’s formula ϕ0 := dχ+ κ ∧ χ ∈ Ω2
bas(M0) one verifies

T =

(
D 0
0 D

)
+

(
ικ̄] ε(ϕ̄0∧)

ε(ϕ̄0∧)† −κ̄∧

)

I ε := (−1)j on j-forms.
I κ =: π∗S1 κ̄ and ϕ0 =: π∗S1 ϕ̄0 for πS1 : M0 −→M0/S

1 .
We conjugate by multiplication by U := h−1/2 = ‖V ‖−1/2,

U−1TU =

(
D 0
0 D

)
+

(
1
2 ĉ(κ̄) ε(ϕ̄0∧)
ε(ϕ̄0∧)† − 1

2 ĉ(κ̄)

)
where ĉ(κ̄) := κ̄ ∧+ικ̄] .
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2 ĉ(κ̄) ε(ϕ̄0∧)
ε(ϕ̄0∧)† − 1
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An induced operator Dirac-Schrödinger operator

Ωev
c (M0)S

1 B:=−c(χ)dM+d†Mc(χ) // Ωev
c (M0)S

1

Ωc(M0/S
1)

ψev

OO

D′ // Ωc(M0/S
1)

ψev

OO

where c is the (left) Clifford Multiplication c(β) := β ∧ −ιβ] .

I The operator B is a first order, symmetric, transversally elliptic
operator which commutes with the S1-action.

I Every symmetric first order differential operator on a closed
manifold is self-adjoint ⇒ the same property holds for D ′.

I It is explicitly given by

D ′ = D +
1

2
c(κ̄)ε− 1

2
ĉ(ϕ̄0)(1− ε)

and satisfies ?D ′ + D ′? = 0.
I It is enough to consider

D := D +
1

2
c(κ̄)ε.
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Example: S1 acting on M = S2 through rotations
I The mean curvature form is κ = −d log(sin θ) = − cot θdθ.

I The induced operator D takes the form

D =DI −
cot θ

2
c(dθ)ε

=γ

(
∂θ + cot θ

(
−1/2 0

0 1/2

))
, where γ :=

(
0 −1
1 0

)
.

I For θ −→ 0+,

D = γ

(
∂θ +

1

θ

(
−1/2 0

0 1/2

))
,

has a structure of a first order regular singular operator.
I The spectrum of the cone coefficient satisfies

spec
(
−1/2 0

0 1/2

)
∩ (−1/2, 1/2) = ∅.

Thus, D is essentially self-adjoint.
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Local description of the potential

I In the local model, the potential c(κ̄)ε/2 takes the form

− 1

2r
c(dr)ε.

I The operator D can be expressed as

D = γ

(
∂

∂r
+ F⊗A (r)

)
=⇒ D+ =

∂

∂r
+ A (r),

where A (r) := A(r)− ε

2r
= AH(r) +

1

r

(
AV −

ε

2

)
.

I The spectrum of the cone coefficient restricted to vertical
harmonic forms is

2j −N ± 1

2
6∈
(
−1

2
,

1

2

)
,

thus we see D is indeed essentially self-adjoint.



Local description of the potential

I In the local model, the potential c(κ̄)ε/2 takes the form

− 1

2r
c(dr)ε.

I The operator D can be expressed as

D = γ

(
∂

∂r
+ F⊗A (r)

)
=⇒ D+ =

∂

∂r
+ A (r),

where A (r) := A(r)− ε

2r
= AH(r) +

1

r

(
AV −

ε

2

)
.

I The spectrum of the cone coefficient restricted to vertical
harmonic forms is

2j −N ± 1

2
6∈
(
−1

2
,

1

2

)
,

thus we see D is indeed essentially self-adjoint.



Local description of the potential

I In the local model, the potential c(κ̄)ε/2 takes the form

− 1

2r
c(dr)ε.

I The operator D can be expressed as

D = γ

(
∂

∂r
+ F⊗A (r)

)
=⇒ D+ =

∂

∂r
+ A (r),

where A (r) := A(r)− ε

2r
= AH(r) +

1

r

(
AV −

ε

2

)
.

I The spectrum of the cone coefficient restricted to vertical
harmonic forms is

2j −N ± 1

2
6∈
(
−1

2
,

1

2

)
,

thus we see D is indeed essentially self-adjoint.



Index formula for the Witt case

CPN

F

r

0

1

F
Zr

Ur = Nr(F )

I ind(D+) = ind
(
D+
Zt,Q<(A(r))(H)

)
+ ind

(
D+
Ut,Q≥(A(r))(H)

)
.

I Prove that for t > 0 small enough ind
(
D+
Ut,Q≥(A(t))(H)

)
= 0.

I How? Split into vertical harmonic forms and its complement. In
the later we show that the potential is a Kato-type potential and
we argue by comparing with D.

I From a variation of Brüning’s method we can prove

lim
r→0+

ind
(
D+
Zt,Q<(A(r))(H)

)
= σS1(M).
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Index formula for the non-Witt case
I We need: ind

(
D+
Ut,Q≥(A(r))(H)

)
= 0.

I We need to prove, for example,

lim
r→0+

ind(Q<(A(r))(H), Q≥(A0(r))(H)) =
1

2
dim(kerA0(r)).

I For the Witt case:
I As r −→ 0+,

ind(Q<(A(r))(H), Q≥(A0(r))(H)) = σ(2)(Tπ) +
1
2
dim(kerA0(r)).

I (Cheeger-Dai) σ(2)(Tπ) = τF . For non-Witt spaces there is a
similar formula developed by Hunsicker & Mazzeo for the
L2-signature on the image Hrel −→ Habs.

Open Questions
I We want to understand the nature of the operator B.
I Can we implement these kind of potentials for general stratified

spaces which do not satisfy the Witt condition?
I Relation with intersection homology?
I Study the case of the spin Dirac operator

(Studied in the Witt case by Albin and Gell-Redman).
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Thank you!
Vielen Dank!

Gracias!
Gràcies!
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