40

input

20

Calibrating Media Mix Models with x1 94% HDI contrik Experimental Data • ourrent total inp x1 contribution me x2 contribution me Simulation Case Study

Berlin Experimentation Meetup 2025

Dr. Juan Orduz

60

Outline

1. What is Media Mix Mo	deling ((MMM)?				
Regression Model						
 Adstock Transform 	nation					
Saturation Transform	ormatior	า				
 Bayesian MMMs (C 	halleng	es and Opporti	inities)			
2. Simulation Case Stud	ły					
Simulation Setup						
 Channels Contribution 	utions					
ROAS Estimates						
3. ROAS Re-parametriza	ation					
4. Lift Test Calibration						
0 1	2	3 time since	4 e exposure	5	6	(

7

D.

What is Media Mix Modeling (MMM)?

MMM as a Regression Model

$$y_t = b_t + \sum_{m=1}^M eta_{m,t} f(x_{m,t}) + \sum_{c=1}^C \gamma_c z_{c,t} + arepsilon_t,$$

- y_t : Target variable at time t (e.g. sales, conversions, etc.)
- b_t : Baseline sales at time t
- $\beta_{m,t}$: Effect of media m on sales at time t
- $f(x_{m,t})$: Transformation of media m at time t
- γ_c : Effect of control variables $z_{c,t}$ on sales
- ε_t : Error term

Adstock Effect

The adstock effect captures the **carryover** of advertising - the idea that the impact of advertising persists and decays over time rather than being instantaneous.

$$\mathrm{adstock}(x_{m,t};lpha,T)=x_{m,t}+lpha\sum_{j=1}^T x_{m,t-j}$$

for $lpha \in [0,1]$ and T the number of periods.

Saturation Effect

The saturation effect captures the idea that the impact of advertising diminishes as the media budget increases.

$$ext{saturation}(x_{m,t};\lambda) = rac{1-\exp(-\lambda x_{m,t})}{1+\exp(-\lambda x_{m,t})}$$

Media Transformations

B.

Why Bayesian MMMs?

Some MMM Challenges

- Limited data (typically 2-3 years of data, sometimes weekly granularity).
- Media variables are generally very correlated.
- Unobserved confounders (e.g. competitors investments).

Bayesian MMMs

- Uncertainty quantification.
- Domain knowledge through priors.
- Lift test calibration (e.g. geo-tests or switch-back experiments).
- Time-varying parameters with Bayesian regularization (e.g. strong priors or hierarchies).
- Risk-based budget optimization.

MMM as a Causal Model

Attribution Decomposition

Channels Contributions over Time

Return on Ad Spend (ROAS) - Biased

Lift Test Calibration - Why?

) Unobserved confounders can bias the ROAS estimates and lead to wrong marketing strategies!

- ROAS re-parametrization (Google).
 - Additional likelihood for lift tests (PyMC-Labs).

ROAS Re-parametrization Formulation

BMMM (Jin et al. [2017]) is modeled by the following generic equation,

$$y_t = \tau + \sum_{m=1}^M \beta_m Hill(Adstock(x_{t,m}^*, \alpha_m, L), K_m, S_m) + \sum_{c=1}^C \gamma_c z_{t,c} + \epsilon_t$$
(14)

Following the same reparameterization process, β_m can be written as,

$$\beta_{m} = \frac{\sum_{T_{0} \leq t \leq T_{1}} C_{t,m} ROAS_{m}}{\sum_{T_{0} \leq t \leq T_{1}+L} (Hill(Adstock(x_{t,m}^{*}, \alpha_{m}, L), K_{m}, S_{m}) - Hill(Adstock(\tilde{x}_{t,m}^{*}, \alpha_{m}, L), K_{m}, S_{m}))}$$
$$:= H'(ROAS_{m}, K_{m}, S_{m}, \alpha_{m}),$$

As a result, BMMM can also be reparameterized with $ROAS_m$ as a parameter instead of β_m , as in

$$y_{t} = \tau + \sum_{m=1}^{M} H'(ROAS_{m}, K_{m}, S_{m}, \alpha_{m}) Hill(Adstock(x_{t,m}^{*}, \alpha_{m}, L), K_{m}, S_{m}) + \sum_{c=1}^{C} \gamma_{c} z_{t,c} + \epsilon_{t}$$
(15)

ROAS Re-parametrization

ROAS Priors

ROAS Re-parametrization

ROAS Posterior

ROAS Re-parametrization

Model Comparison

Global ROAS - Model Comparison

Lift Test Calibration

Saturation Curves

Ġ.

Lift Test Calibration Additional Likelihood

Lift Test Calibration

ROAS Posterior

PyMC-Marketing

Bayesian marketing toolbox in PyMC. Media Mix (MMM), customer lifetime value (CLV), buy-till-you-die (BTYD)

References

ROAS Re-parametrization

- Media Mix Model Calibration With Bayesian Priors
- Media Mix Model and Experimental Calibration: A Simulation Study
- Google Meridian: https://github.com/google/meridian

Additional Likelihood

- PyMC-Marketing: Lift Test Calibration
- Case Study: Unobserved Confounders, ROAS and Lift Tests
- PyMC-Marketing: https://github.com/pymc-labs/pymc-marketing

Marketing Experimentation

- Wolt Tech Talks: Offline Campaign Analysis Measurement
- Google: The MMM Handbook

Thank You!

juan.orduz@pymc-labs.com

