C^* -Algebras and the Gelfand-Naimark Theorems

Juan Camilo Orduz

Berlin Mathematical School

Student conference 2014

"A useful way of thinking of the theory of C^* -algebras is as non-commutative topology. This is justified by the correspondence between commutatve C^* -algebras and Hausdorff locally compact topological spaces given by the Gelfand representation. On the other hand the von Neumann algebras are a class of C^* -algebras whose studies can be thought as non-commutative measure theory."

Banach Algebras

Definition

- ► An algebra A is a C-vector space together with a bilinear map A × A → A which is associative. We will assume that there is a multiplicative identity 1. (Unital algebra)
- A norm ||·|| on an algebra A is said to be submultiplicative if ||ab|| ≤ ||a|||b|| for all a, b ∈ A. In this case (A, ||·||) is called a normed algebra.
- ► A Banach algebra *A* is a normed algebra which in complete with respect to the norm, i.e. every Cauchy sequence converges in *A*.

Example 1: Commutative Example

Let $\boldsymbol{\Omega}$ be a Hausdorff compact topological space. Consider the space

$$C(\Omega) = \{f : \Omega \longrightarrow \mathbb{C} \mid f \text{ continuous}\}$$

with point-wise multiplication

$$(fg)(\omega) = f(\omega)g(\omega) \quad \forall \omega \in \Omega$$

and with norm the sup-norm

$$f \| = \sup_{\omega \in \Omega} |f(\omega)|$$

Berlin
Mathematical
School

Example 2 :Non-Commutative Example

Let $(X, \|\cdot\|)$ be a Banach space space. Consider the space

$$\mathcal{B}(X) = \{T : X \longrightarrow X \mid T \text{ bounded}\}$$

with "multiplication" given by composition. Then $\mathcal{B}(X)$ is a Banach algebra with respect to the operator norm:

If $T \in \mathcal{B}(X)$ define

$$||T|| = \sup_{x \neq 0} \frac{||T(x)||}{||x||}$$

Gelfand-Naimark Theorems

"Example 1 and Example 2 are the generic C*-algebras."

We are going to study the commutative case

Given a C^* -algebra A how do we construct a Hausdorff compact topological space $\Omega(A)$ such that

 $A \cong C(\Omega(A))$?

Ideals

Definition

A left (respectively, right) ideal in an algebra A is a vector subspace J such that $a \in A$ and $b \in J$ implies that $ab \in J$ (respectively, $ba \in J$). An ideal in A is a vector subspace that is simultaneously a left and a right ideal.

Theorem

Let J be an ideal in a Banach algebra A. If J is proper, so is its closure \overline{J} . If J is maximal, then its closed.

The spectrum

Let A be a unital Banach algebra.

Definition

We define the spectrum of an element $a \in A$ to be the set

$$\sigma(a) = \{\lambda \in \mathbb{C} \mid \lambda 1 - a \notin \mathsf{Inv}(A)\}$$

Example

Let $A = C(\Omega)$ where Ω is a compact Hausdorff topological space. Then $\sigma(f) = f(\Omega)$ for all $f \in A$.

Some properties of the spectrum

- Gelfand Theorem: $\sigma(a) \neq \emptyset$ for all $a \in A$.
- ► The spectrum of a ∈ A is a compact subset of C. Moreover, it is a subset of the disc of radius ||a|| and centered in the origin.
- If we define the spectral radius of an element $a \in A$ by

$$r(a) = \sup_{\lambda \in \sigma(a)} |\lambda|$$

then

$$r(a) = \inf_{n \ge 1} ||a^n||^{1/n} = \lim_{n \to \infty} ||a^n||^{1/n}$$

Characters

Definition

A character τ on a commutative algebra A is a non-zero homomorphism between algebras $\tau : A \longrightarrow \mathbb{C}$. Let $\Omega(A)$ denote the space of all characters on A.

Remark

The space of characters $\Omega(A)$ is a subspace of the dual space A'.

Theorem

- If $\tau \in \Omega(A)$ then $\|\tau\| = 1$.
- The set Ω(A) is non-empty and the map τ → ker(τ) defines a bijection from Ω(A) onto the set of all maximal ideals of A.
- $\sigma(a) = \{\tau(a) \mid \tau \in \Omega(A)\}.$

Topology of $\Omega(A)$

- The space Ω(A) is contained in the closed unit ball B of A'.
 Endow Ω(A) with the relative weak* topology.
- Weak Topology: A sequence (χ_n)_n ⊆ A' converges to an element χ ∈ A' is the weak* topology if χ_n(a) → χ(a) for all a ∈ A.

Topology of $\Omega(A)$

- The space Ω(A) is contained in the closed unit ball B of A'.
 Endow Ω(A) with the relative weak* topology.
- Weak Topology: A sequence (χ_n)_n ⊆ A' converges to an element χ ∈ A' is the weak* topology if χ_n(a) → χ(a) for all a ∈ A.

Theorem

The space $\Omega(A)$ is a compact Hausdorff topological space with respect to the weak* topology induced by A'.

Proof

- $\Omega(A)$ is weak* closed in the unit ball B of A'.
- B is weak* compact (Banach-Alaoglu Theorem).

The Gelfand Representation

If $a \in A$ define a function $\hat{a} : \Omega(A) \longrightarrow \mathbb{C}$ by $\hat{a}(\tau) = \tau(a)$. We call \hat{a} the Gelfand transform of a.

Remark

Note that the topology on $\Omega(A)$ is the weakest (smallest) topology making all this functions continuous.

Gelfand Representation Theorem

Suppose that A is a unital Banach algebra. Then the map $A \longrightarrow C(\Omega(A))$ given by $a \longmapsto \hat{a}$ is a norm-decreasing homomorphism, i.e. $\|\hat{a}\| \le \|a\|$ and $r(a) = \|\hat{a}\|$.

Proof

$$\|\hat{a}\| = \sup_{\tau \in \Omega(A)} |\hat{a}(\tau)| = \sup_{\tau \in \Omega(a)} |\tau(a)| = \sup_{\lambda \in \sigma(a)} |\lambda| = r(a) \le \|a\|.$$
Berlin
Mathematical
School

Involutions and C^* -Algebras

Definition

An involution on an algebra A is a conjugate-linear map $*: A \longrightarrow A$ such that $a^{**} = a$ and $(ab)^* = b^*a^*$.

Definition

A C^{*}-algebra is a Banach *-algebra such that $||a^*a|| = ||a||^2$.

Examples

- \mathbb{C} is a C^* -algebra under conjugation.
- Example 1: $A = \Omega(A)$ is a C*-algebra algebra with $f^*(\omega) = \overline{f(\omega)}$.
- ► Example 2: The set of bounded operators B(H) of a Hilbert space H is a C*-algebra under taking adjoints.

Gelfand-Naimark Theorem

Let A be a C*-algebra , then the Gelfand representation $\phi: A \longrightarrow C(\Omega(A))$ is an isometric *-isomorphism.

Proof

Is it easy to see that ϕ is a *-homomorphism. No note that

$$\|\phi(a)\|^2 = \|\phi(a)^*\phi(a)\| = \|\phi(a^*a)\| = r(a^*a) \stackrel{!}{=} \|a^*a\| = \|a\|^2.$$

Therefore ϕ is an isometry (and hence injective). The set $\phi(A)$ is a closed *-subalgebra of C(A) separating the points of $\Omega(A)$ and having the property that for any $\tau \in \Omega(A)$ there is an element $a \in A$ such that $\phi(a)(\tau) \neq 0$. The Stone-Weierstrass theorem implies that $\phi(A) = C(A)$.

Example 1 Revised

Let $\boldsymbol{\Omega}$ be a Hausdorff compact topological space.

- $A = C(\Omega)$ is a C^* -algebra.
- The space of characters Ω(A) is a Hausdorff compact topological space.
- By the Gelfand-Naimark theorem the map A → C(Ω(A)) is a C*-algebra isomorphism, i.e. A is the space of complex-valued continuous functions over Ω(A).

Question

What is the relation between Ω and $\Omega(A)$? Topology?

Example 1 Revised

• To each point $\omega \in \Omega$ we associate a character in $A = C(\Omega)$

$$\chi: \Omega \longrightarrow \Omega(A)$$
$$\omega \longmapsto \chi_{\omega}: A \longrightarrow \mathbb{C}$$
$$f \longmapsto f(\omega)$$

- ▶ Note that $C(\Omega)$ separates points in Ω (Urysohn's lemma): if $\omega_1 \neq \omega_2$ then $\chi_{\omega_1} \neq \chi_{\omega_2}$. Therefore Ω can be embedded in $\Omega(C(\Omega))$.
- It can be shown using a compactess argument that χ is onto, i.e. Ω = Ω(A) (As sets!).
- In spite that the left hand side carries the given topology of Ω and the right hand side carries the weak* topology relative to C(Ω)', these topologies coincide (compactess ragument again) so that

$$\Omega \cong \Omega(C(\Omega))$$

nac

as topological spaces.

Functorial Relations

 C^* -alg. to Top. Space Top. Space to C^* -alg.

Gelfand-Naimark (commutative) Theorem

Can be thought a s the construction of two contravariant functors from the category of (locally) compact Hausdorff spaces to the category of (non-unital) C^* -algebras.

Topology

- Iocally compact space
- compact space
- compactification
- continuous proper map
- homeomorphism
- open subset
- closed subset
- metrizable
- Baire measure

Algebra

- C*-algebra
- unital C*-algebra
- unitization
- *-homomorphism
- automorphism
- ideal
- quotient algebra
- separable
- positive linear functional

Non-Commutative Version

Definition

A representation of a C^* -algebra is a pair (H, ϕ) where H is a Hilbert space and $\phi : A \longrightarrow \mathcal{B}(H)$ is a *-homomorphism. We say that (H, ϕ) is faithful if ϕ is injective.

Gelfand-Neimark Theorem

If A is a C^* -algebra, then it has a faithful representation.

Mmmmm... Question

• Let $C_b(\mathbb{R})$ be defined as

 $C_b(\mathbb{R}) = \{ f : \mathbb{R} \longrightarrow \mathbb{C} \mid f \text{ continuous and bounded} \}$

with point-wise multiplication as with the sup norm and involution given by the complex conjugation.

- The algebra A = C_b(ℝ) is a unital commutative C*-algebra. Thus, by the Gelfand-Naimark theorem there exists a Hausdorff compact topological space Ω such that C_b(ℝ) ≅ C(Ω). What is the relation between ℝ and Ω?
- If we generalize this example to a general topological space X, i.e.

 $C_b(X) \cong C(\Omega)$???

