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Differential Forms
A differential form on a manifold M is something of the form

» f e C>®(M,C) is a smooth function on M.
> dol :=dz Adx™ A - AdatE,
where i1 <19 < --- < iy for I = {il,iz,'-- ,ik} - {1,2,-~- ,n}.
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Differential Forms
A differential form on a manifold M is something of the form

w(z) = f(z)d’.

» f e C>®(M,C) is a smooth function on M.
> dol :=dz Adx™ A - AdatE,
where i1 < ip < -+ < iy for I = {iy,i9, - ,ix} C{1,2,--- ,n}.
Define the space of k-forms as Q% (M) := {w = fdz! : |I| = k}
» Wedge Product: dz! A dx’ = (—1)1Vdx’ A da!.
» Exterior Derivative: d : Q*(M) — QFF1(M),

d (f(x)de) = Z 8g;f>dxj Adal

Jj=1
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Differential Forms

A differential form on a manifold M is something of the form

w(z) = f(z)d’.

» f e C>®(M,C) is a smooth function on M.
> dol :=dz Adx™ A - AdatE,
where i1 < ip < -+ < iy for I = {iy,i9, - ,ix} C{1,2,--- ,n}.
Define the space of k-forms as Q% (M) := {w = fdz! : |I| = k}
» Wedge Product: dz! A dx’ = (—1)1Vdx’ A da!.
» Exterior Derivative: d : Q*(M) — QFF1(M),

n

d (f(x)de) = Z 8g;f>dxj Adal

j=1

e Example: w = cos(z!)dz{?3 = cos(z')da? A dz?, then

dw = —sin(z)dx' A d2? A da®, sert
erlin
d(dw) = — cos(z)dz! A dz' A dx? A dx® = 0. m Mathematical

School



The de Rham Complex

» The exterior derivative satisfies d> = 0 = im(d) C ker(d).

» If we set n := dim M then we define the de Rham Complex of
M as

QM) -4~ ... s o= (A1) - QM (M) —>0

» The de Rham cohomology groups are

ker(d)
Hip(M) = .
» The de Rham theorem states that Hjp(M) = HZ (M, R).
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Square integrable differential forms

Let M be a closed and Riemannian manifold. Consider the induced
L?-inner product on differential forms:

(wi,wa)p2 := /M<w1 (), wa(z))dz.

Define the space of square integrable forms by L*(M):= Q(M)
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Square integrable differential forms

Let M be a closed and Riemannian manifold. Consider the induced
L?-inner product on differential forms:

(wi,wa)p2 := /M<w1 (), wa(z))dz.

L2

Define the space of square integrable forms by L*(M):= Q(M)
Let df : QF(M) — QF~1(M) be the formal adjoint of d, i.e

(dwl,wg)Lz = (wl,dng)Lz le,WQ € Q(M)

QL(M) —L= ... s on-1 (A1) L Qn (M) — 0.
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Hodge Theorem
The associated Laplacian is A := dd + dfd.

A A A A
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Hodge Theorem
The associated Laplacian is A := dd + dfd.

A A A A
o o gy a5
0 QO(M) QL(M) L= .. L ont () L Qr (M) —=0

N N

This positive second order differential operator is

» Elliptic. (Regularity)

» Essentially self-adjoint and discrete. (Spectral theorem)
The space of harmonic forms on M is

H(M) = ker(A) = {w € QM) | dw = diw = 0} (dimH (M) < 00).
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Hodge Theorem
The associated Laplacian is A := dd + dfd.

A A A A
o o gy a5
0 QO(M) QL(M) L= .. L ont () L Qr (M) —=0

N N

This positive second order differential operator is

» Elliptic. (Regularity)

» Essentially self-adjoint and discrete. (Spectral theorem)
The space of harmonic forms on M is

H(M) = ker(A) = {w € QM) | dw = diw = 0} (dimH (M) < 00).
We have a natural map
H(M) —— Har(M)
whF———— [w]

Berlin
Hodge Theorem: m Mathematical
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This map is a isomorphism.



L?-Cohomology

M = oriented Riemannian manifold of dimension n. Define

L2

Q.(M) :={w € QM) | supp(w) is compact} and L*(M):= Q.(M)
In this case we define the formal adjoint df of d by

(dwl,wQ)Lz = (wl,dTWQ)L2 le,WQ S QC(M)
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L?-Cohomology

M = oriented Riemannian manifold of dimension n. Define

L2

Q.(M) :={w € QM) | supp(w) is compact} and L*(M):= Q.(M)
In this case we define the formal adjoint df of d by
(dwi,ws) e = (wi,diwy) 2 Ywr,ws € Qu(M).
Consider the exterior derivative d defined on
Q2)(M) == {w € UM)NL*(M) | dw € L*(M)}.
This yields to a complex

(M) —2> Q! (M) —%> ... —25Qn (M) —>0

0
0 —— & @) (2)

2)
The associated cohomology groups H (*2)(M ) define L2-cohomology
of M, which we denote by HE"Q)(M). m Berlin
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Example

Consider M = R with the Euclidean metric. Then

if k=
Hy®)={0 BE=0 .
is infinite dimensional, if k=1

» Constant functions are not in L(R).

> Let ¢ € C.(R,C), then clearly d(¢dx) = 0.
If there exists f € C.(R,C) such that df = ¢dz then

[ o@ie= [ @@ -0,

since the support of f is compact.
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Example: Conical singularity

Let N be a closed manifold of dimension n with Riemannian metric
gn. Define the cone on N by C'(N) := (0,1) x N with metric
Riemannian metric

g=dr? +rgy.

The L?-cohomology groups are:

1
HY(N), if k< 2

N > Hy(O() = n+1

0, if k >
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Example: Conical singularity

Let N be a closed manifold of dimension n with Riemannian metric
gn. Define the cone on N by C'(N) := (0,1) x N with metric
Riemannian metric

g=dr? +rgy.

The L?-cohomology groups are:

1
HY(N), if k< 2

N > Hy(O() = n+1

0, if k >

For example: Let w be an k-form on N and extend it trivially to

C(N), then
1
/ \w|§dx:/ / |w|§Nr"72kdydr,
C(N) 0o JN

2 _ _ l
thus w € L*(C(N)) <= n —2k > —1. m E/Ieartknematical
School



Two closed extensions
Recall Q.(M) C Q2)(M) :={w e QM) NL*(M) | dw € L*(M)}.
We define two closed extensions of the exterior derivative:

» Minimal extension: d;,w = f

w € Dom(dpin) <=3 (wn)n C Q(M) such that w, — w
and dw, — B for some 3 € L*(M).

» Maximal extension d..w =

w € Dom(dmax) <=3 (Wn)n C Q2)(M) such that w, — w
and dw,, — B for some 3 € L*(M).

Clearly d C dpin C dpax-
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Two closed extensions
Recall Q.(M) C Q2)(M) :={w e QM) NL*(M) | dw € L*(M)}.
We define two closed extensions of the exterior derivative:

» Minimal extension: d;,w = f

w € Dom(dpin) <=3 (wn)n C Q(M) such that w, — w
and dw, — B for some 3 € L*(M).

» Maximal extension d..w =

w € Dom(dmax) <=3 (Wn)n C Q2)(M) such that w, — w
and dw,, — B for some 3 € L*(M).

Clearly dcC dmin - dmax~
ker(dmax)
1m( max)

» Reduced L?-cohomology:

» If we define H(Q),#(M) = then H(g)(M) = H(2)7#(M).

ker(dmax)

H(Q)’#(M) = —_— Berlin )
lm(dmax) gﬂcaﬁgsrﬂat[cal



L?-Harmonic Forms
We define the space of L?-harmonic forms by

Hioy(M) := {w € QM) N L*(M) | dw = d'w = 0}

e Is the inclusion I : H o) (M) — H (M) an isomorphism?
If it does we say that the strong Hodge theorem holds.
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L?-Harmonic Forms
We define the space of L?-harmonic forms by

Hioy(M) := {w € QM) N L*(M) | dw = d'w = 0}

e Is the inclusion I : H o) (M) — H (M) an isomorphism?
If it does we say that the strong Hodge theorem holds.
» The map I is surjective if im(dpyax) is closed, i.e.

im(dmax) = im(dmax)-

In particular, this holds if dim(H&)(M)) < 0.
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L?-Harmonic Forms
We define the space of L?-harmonic forms by

Hioy(M) := {w € QM) N L*(M) | dw = d'w = 0}
e Is the inclusion I : H o) (M) — H (M) an isomorphism?
If it does we say that the strong Hodge theorem holds.
» The map I is surjective if im(dpyax) is closed, i.e.
im(dmax) = im(dmax)-
In particular, this holds if dim(H&)(M)) < 0.

» The map I is injective if Stokes theorem holds in the L2
sense (L2ST), i.e. dmin = dmax, equivalently

(dmaxw1, ws2) = (w1, d;rnaxwg) VYw € Dom(dpax), w2 € Dom(d;fnax).
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L?-Harmonic Forms
We define the space of L?-harmonic forms by
Hioy(M) := {w € QM) N L*(M) | dw = d'w = 0}
e Is the inclusion I : H o) (M) — H (M) an isomorphism?
If it does we say that the strong Hodge theorem holds.
» The map I is surjective if im(dpyax) is closed, i.e.
im(dmax) = im(dmax)-
In particular, this holds if dim(H&)(M)) < 0.

» The map I is injective if Stokes theorem holds in the L2
sense (L2ST), i.e. dmin = dmax, equivalently

(dmaxw1, ws2) = (w1, d;rnaxwg) VYw € Dom(dpax), w2 € Dom(d;fnax).

Main idea: From the Kodira decomposition we obtain

H(Q) (M) = ker(dmax) N ker(djnin) EB (Hn(dmaX)

im(d ) Berlin
( max) m Mathematical
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Conclusions and Remarks

Main Message:

If the L2-cohomology has finite dimension and (L?ST) holds, then the
strong Hodge theorem holds, i.e.

H(2)(M) = H(g)(M).
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Conclusions and Remarks
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If the L2-cohomology has finite dimension and (L?ST) holds, then the
strong Hodge theorem holds, i.e.

H(2)(M) = H(g)(M).

Concerning the (L2ST):
» Gaffney: M complete = (L2ST) holds.
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Conclusions and Remarks

Main Message:

If the L2-cohomology has finite dimension and (L?ST) holds, then the
strong Hodge theorem holds, i.e.

H(2)(M) = H(g)(M).

Concerning the (L2ST):
» Gaffney: M complete = (L2ST) holds.
» For conical singularities M = My U C(N),

) ==

OMy = N

Cheeger: (L?ST) holds for M if:
» (L?ST) holds for N. 8 Berlin

dim N/2 _ Mathematical
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Conclusions and Remarks

» If (L?>ST) holds , Poincaré duality holds as well. Then
L?-signature of M is well defined in this case.
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Conclusions and Remarks

» If (L?>ST) holds , Poincaré duality holds as well. Then
L?-signature of M is well defined in this case.

» There exists a Mayer-Vietoris sequences for L?-cohomology.
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Conclusions and Remarks

» If (L?>ST) holds , Poincaré duality holds as well. Then
L?-signature of M is well defined in this case.

» There exists a Mayer-Vietoris sequences for L?-cohomology.

» The L?-cohomology of singular spaces is intimately related to the
intersection cohomology of Goresky-MacPherson (IPH*(M)).

The parameter p is called a perversity and measures the failure
of Poincaré duality on singular spaces.
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Conclusions and Remarks

» If (L?>ST) holds , Poincaré duality holds as well. Then
L?-signature of M is well defined in this case.

» There exists a Mayer-Vietoris sequences for L?-cohomology.

» The L?-cohomology of singular spaces is intimately related to the
intersection cohomology of Goresky-MacPherson (IPH*(M)).
The parameter p is called a perversity and measures the failure

of Poincaré duality on singular spaces.
» There are various extensions of L2, for cohomology example,

cohomology with coefficients or Dolbeault cohomology (9) for
complex manifolds.
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Conclusions and Remarks

|

If (L?ST) holds , Poincaré duality holds as well. Then
L?-signature of M is well defined in this case.

There exists a Mayer-Vietoris sequences for L2-cohomology.

The L?-cohomology of singular spaces is intimately related to the
intersection cohomology of Goresky-MacPherson (IPH*(M)).
The parameter p is called a perversity and measures the failure
of Poincaré duality on singular spaces.

There are various extensions of L2, for cohomology example,

cohomology with coefficients or Dolbeault cohomology (9) for
complex manifolds.

The appropriate setting to study all these notions are Hilbert
Complexes [Briining & Lesch].

do

dn_ dn_
0 —> g~ oG " T Sy T Ay —> 0
; = Hilbert space and d; : Dom(d;) C 54, — 511

Berlin
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