
L2-Cohomology and the Hodge Theorem

Juan Orduz

Berlin Mathematical School
Humboldt Universität zu Berlin

Geometrische Analysis und Spektraltheorie

BMS Student Conference 2016



Differential Forms
A differential form on a manifold M is something of the form

ω(x) = f(x)dxI .

I f ∈ C∞(M,C) is a smooth function on M .
I dxI := dxi1 ∧ dxi2 ∧ · · · ∧ dxik ,

where i1 < i2 < · · · < ik for I = {i1, i2, · · · , ik} ⊆ {1, 2, · · · , n}.

Define the space of k-forms as Ωk(M) := {ω = fdxI : |I| = k}
I Wedge Product: dxI ∧ dxJ = (−1)|I||J|dxJ ∧ dxI .
I Exterior Derivative: d : Ωk(M) −→ Ωk+1(M),

d
(
f(x)dxI

)
:=

n∑
j=1

∂f(x)

∂xj
dxj ∧ dxI .

• Example: ω = cos(x1)dx{2,3} = cos(x1)dx2 ∧ dx3, then

dω = − sin(x1)dx1 ∧ dx2 ∧ dx3,

d(dω) = − cos(x1)dx1 ∧ dx1 ∧ dx2 ∧ dx3 = 0.
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The de Rham Complex

I The exterior derivative satisfies d2 = 0⇒ im(d) ⊆ ker(d).
I If we set n := dimM then we define the de Rham Complex of
M as

0 // Ω0(M)
d // Ω1(M)

d // · · · d // Ωn−1(M)
d // Ωn(M) // 0

I The de Rham cohomology groups are

H∗dR(M) :=
ker(d)

im(d)
.

I The de Rham theorem states that H∗dR(M) ∼= H∗sing(M,R).



Square integrable differential forms

Let M be a closed and Riemannian manifold. Consider the induced
L2-inner product on differential forms:

(ω1, ω2)L2 :=

∫
M

〈ω1(x), ω2(x)〉dx.

Define the space of square integrable forms by L2(M):= Ω(M)
L2

.

Let d† : Ωk(M) −→ Ωk−1(M) be the formal adjoint of d, i.e

(dω1, ω2)L2 = (ω1, d
†ω2)L2 ∀ω1, ω2 ∈ Ω(M).

0 // Ω0(M)
d // Ω1(M)

d //

d†

[[
· · · d // Ωn−1(M)

d // Ωn(M)

d†

\\
// 0.
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Hodge Theorem
The associated Laplacian is ∆ := dd† + d†d.
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\\
// 0

This positive second order differential operator is
I Elliptic. (Regularity)
I Essentially self-adjoint and discrete. (Spectral theorem)

The space of harmonic forms on M is

H(M) := ker(∆)
!
= {ω ∈ Ω(M) | dω = d†ω = 0} (dimH(M) <∞).

We have a natural map

H(M) // HdR(M)

ω � // [ω]

Hodge Theorem:
This map is a isomorphism.
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L2-Cohomology

M = oriented Riemannian manifold of dimension n. Define

Ωc(M) :={ω ∈ Ω(M) | supp(ω) is compact} and L2(M) := Ωc(M)
L2

.

In this case we define the formal adjoint d† of d by

(dω1, ω2)L2 = (ω1, d
†ω2)L2 ∀ω1, ω2 ∈ Ωc(M).

Consider the exterior derivative d defined on

Ω(2)(M) := {ω ∈ Ω(M) ∩ L2(M) | dω ∈ L2(M)}.

This yields to a complex

0 // Ω0
(2)(M)

d // Ω1
(2)(M)

d // · · · d // Ωn
(2)(M) // 0

The associated cohomology groups H∗(2)(M) define L2-cohomology
of M , which we denote by H∗(2)(M).
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Example

Consider M = R with the Euclidean metric. Then

Hk
(2)(R) =

{
0, if k = 0

is infinite dimensional, if k = 1

I Constant functions are not in L2(R).
I Let φ ∈ Cc(R,C), then clearly d(φdx) = 0.

If there exists f ∈ Cc(R,C) such that df = φdx then∫
R
φ(x)dx =

∫
R
df(x) = 0,

since the support of f is compact.



Example: Conical singularity

Let N be a closed manifold of dimension n with Riemannian metric
gN . Define the cone on N by C(N) := (0, 1)×N with metric
Riemannian metric

g = dr2 + r2gN .

The L2-cohomology groups are:

N

r

Hk
(2)(C(N)) =


Hk(N), if k <

n+ 1

2

0, if k ≥ n+ 1

2

For example: Let ω be an k-form on N and extend it trivially to
C(N), then ∫

C(N)

|ω|2gdx =

∫ 1

0

∫
N

|ω|2gN r
n−2kdydr,

thus ω ∈ L2(C(N))⇐⇒ n− 2k > −1.
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Two closed extensions
Recall Ωc(M) ⊆ Ω(2)(M) := {ω ∈ Ω(M) ∩ L2(M) | dω ∈ L2(M)}.
We define two closed extensions of the exterior derivative:

I Minimal extension: dminω = β

ω ∈ Dom(dmin)⇐⇒∃ (ωn)n ⊂ Ωc(M) such that ωn −→ ω

and dωn −→ β for some β ∈ L2(M).

I Maximal extension dmaxω = β

ω ∈ Dom(dmax)⇐⇒∃ (ωn)n ⊂ Ω(2)(M) such that ωn −→ ω

and dωn −→ β for some β ∈ L2(M).

Clearly d ⊂ dmin ⊂ dmax.

I If we define H(2),#(M) :=
ker(dmax)

im(dmax)
then H(2)(M) ∼= H(2),#(M).

I Reduced L2-cohomology:

H̄(2),#(M) :=
ker(dmax)

im(dmax)
.
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L2-Harmonic Forms
We define the space of L2-harmonic forms by

H(2)(M) := {ω ∈ Ω(M) ∩ L2(M) | dω = d†ω = 0}

• Is the inclusion I : H(2)(M) −→ H(2)(M) an isomorphism?
If it does we say that the strong Hodge theorem holds.

I The map I is surjective if im(dmax) is closed, i.e.

im(dmax) = im(dmax).

In particular, this holds if dim(H∗(2)(M)) <∞.
I The map I is injective if Stokes theorem holds in the L2

sense (L2ST), i.e. dmin = dmax, equivalently

(dmaxω1, ω2) = (ω1, d
†
maxω2) ∀ω1 ∈ Dom(dmax), ω2 ∈ Dom(d†max).

Main idea: From the Kodira decomposition we obtain

H(2)(M) = ker(dmax) ∩ ker(d†min)︸ ︷︷ ︸
(L2ST )⇒=H(2)(M)

⊕

(
im(dmax)

im(dmax)

)
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Conclusions and Remarks
Main Message:
If the L2-cohomology has finite dimension and (L2ST) holds, then the
strong Hodge theorem holds, i.e.

H(2)(M) ∼= H(2)(M).

Concerning the (L2ST):
I Gaffney: M complete =⇒ (L2ST) holds.
I For conical singularities M = M0 ∪ C(N),

M0
∂M0 = N

Cheeger: (L2ST) holds for M if:
I (L2ST) holds for N .
I H

dimN/2

(2) (N) = 0.
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Conclusions and Remarks

I If (L2ST ) holds , Poincaré duality holds as well. Then
L2-signature of M is well defined in this case.

I There exists a Mayer-Vietoris sequences for L2-cohomology.
I The L2-cohomology of singular spaces is intimately related to the
intersection cohomology of Goresky-MacPherson (IpH∗(M)).
The parameter p is called a perversity and measures the failure
of Poincaré duality on singular spaces.

I There are various extensions of L2, for cohomology example,
cohomology with coefficients or Dolbeault cohomology (∂̄) for
complex manifolds.

I The appropriate setting to study all these notions are Hilbert
Complexes [Brüning & Lesch].

0 // H0
d0 // H1

d1 // · · ·
dn−2 // Hn−1

dn−1 // Hn
// 0

Hi = Hilbert space and di : Dom(di) ⊆Hi −→Hi+1

are a closed operators such that di ◦ di−1 = 0.
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