$L^2\operatorname{-Cohomology}$ and the Hodge Theorem

Juan Orduz

Berlin Mathematical School Humboldt Universität zu Berlin Geometrische Analysis und Spektraltheorie

BMS Student Conference 2016

Differential Forms

A differential form on a manifold M is something of the form

$$\omega(x) = f(x)dx^I.$$

f ∈ *C*[∞](*M*, ℂ) is a smooth function on *M*.
 dx^I := *dx^{i₁}* ∧ *dx<sup>i₂* ∧ · · · ∧ *dx<sup>i_k*, where *i*₁ < *i*₂ < · · · < *i_k* for *I* = {*i*₁, *i*₂, · · · , *i_k*} ⊆ {1, 2, · · · , *n*}.
</sup></sup>

Differential Forms

A differential form on a manifold M is something of the form

$$\omega(x) = f(x)dx^I.$$

- *f* ∈ C[∞](*M*, ℂ) is a smooth function on *M*.
 dx^I := *dx^{i₁}* ∧ *dx<sup>i₂* ∧ · · · ∧ *dx<sup>i_k*, where *i₁* < *i₂* < · · · < *i_k* for *I* = {*i₁, i₂, · · · , i_k*} ⊆ {1, 2, · · · , *n*}.
 Define the space of *k*-forms as Ω^k(*M*) := {ω = *fdx^I* : |*I*| = *k*}
 </sup></sup>
 - Wedge Product: $dx^I \wedge dx^J = (-1)^{|I||J|} dx^J \wedge dx^I$.
 - ▶ Exterior Derivative: $d: \Omega^k(M) \longrightarrow \Omega^{k+1}(M),$

$$d\left(f(x)dx^{I}\right) := \sum_{j=1}^{n} \frac{\partial f(x)}{\partial x^{j}} dx^{j} \wedge dx^{I}.$$

Differential Forms

A differential form on a manifold M is something of the form

$$\omega(x) = f(x)dx^I.$$

f ∈ C[∞](*M*, ℂ) is a smooth function on *M*.
 dx^I := *dx^{i₁}* ∧ *dx^{i₂}* ∧ · · · ∧ *dx<sup>i_k*</sub>, where *i₁* < *i₂* < · · · < *i_k* for *I* = {*i₁, i₂, · · · , <i>i_k*} ⊆ {1, 2, · · · , *n*}.
 Define the space of *k*-forms as Ω^k(*M*) := {ω = *fdx^I* : |*I*| = *k*}
</sup>

- ▶ Wedge Product: $dx^I \wedge dx^J = (-1)^{|I||J|} dx^J \wedge dx^I$.
- Exterior Derivative: $d: \Omega^k(M) \longrightarrow \Omega^{k+1}(M)$,

$$d\left(f(x)dx^{I}\right) := \sum_{j=1}^{n} \frac{\partial f(x)}{\partial x^{j}} dx^{j} \wedge dx^{I}.$$

• Example: $\omega = \cos(x^1)dx^{\{2,3\}} = \cos(x^1)dx^2 \wedge dx^3$, then

$$d\omega = -\sin(x^1)dx^1 \wedge dx^2 \wedge dx^3,$$

$$d(d\omega) = -\cos(x^1)dx^1 \wedge dx^1 \wedge dx^2 \wedge dx^3 = 0.$$

The de Rham Complex

- The exterior derivative satisfies $d^2 = 0 \Rightarrow \operatorname{im}(d) \subseteq \operatorname{ker}(d)$.
- ► If we set n := dim M then we define the de Rham Complex of M as

$$0 \longrightarrow \Omega^0(M) \xrightarrow{d} \Omega^1(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{n-1}(M) \xrightarrow{d} \Omega^n(M) \longrightarrow 0$$

▶ The de Rham cohomology groups are

$$H_{dR}^*(M) := \frac{\ker(d)}{\operatorname{im}(d)}.$$

• The **de Rham theorem** states that $H^*_{dR}(M) \cong H^*_{sing}(M, \mathbb{R})$.

Square integrable differential forms

Let M be a **closed** and **Riemannian** manifold. Consider the induced L^2 -inner product on differential forms:

$$(\omega_1, \omega_2)_{L^2} := \int_M \langle \omega_1(x), \omega_2(x) \rangle dx.$$

Define the space of square integrable forms by $L^2(M) := \overline{\Omega(M)}^{L^2}$.

Square integrable differential forms

Let M be a **closed** and **Riemannian** manifold. Consider the induced L^2 -inner product on differential forms:

$$(\omega_1, \omega_2)_{L^2} := \int_M \langle \omega_1(x), \omega_2(x) \rangle dx.$$

Define the space of square integrable forms by $L^2(M) := \overline{\Omega(M)}^{L^2}$.

Let $d^{\dagger}: \Omega^k(M) \longrightarrow \Omega^{k-1}(M)$ be the **formal adjoint** of d, i.e

$$(d\omega_1, \omega_2)_{L^2} = (\omega_1, d^{\dagger}\omega_2)_{L^2} \quad \forall \omega_1, \omega_2 \in \Omega(M).$$

Hodge Theorem

The associated **Laplacian** is $\Delta := dd^{\dagger} + d^{\dagger}d$.

Hodge Theorem

The associated **Laplacian** is $\Delta := dd^{\dagger} + d^{\dagger}d$.

$$0 \longrightarrow \Omega^{0}(M) \xrightarrow{d} \Omega^{1}(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{n-1}(M) \xrightarrow{d} \Omega^{n}(M) \longrightarrow 0$$

This positive second order differential operator is

- ▶ Elliptic. (Regularity)
- ▶ Essentially self-adjoint and discrete. (Spectral theorem)

The space of **harmonic forms** on M is

$$\mathcal{H}(M) := \ker(\Delta) \stackrel{!}{=} \{ \omega \in \Omega(M) \mid d\omega = d^{\dagger}\omega = 0 \} \quad (\dim \mathcal{H}(M) < \infty).$$

Hodge Theorem

The associated **Laplacian** is $\Delta := dd^{\dagger} + d^{\dagger}d$.

$$0 \longrightarrow \Omega^{0}(M) \xrightarrow{d} \Omega^{1}(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{n-1}(M) \xrightarrow{d} \Omega^{n}(M) \longrightarrow 0$$

This positive second order differential operator is

- ▶ Elliptic. (Regularity)
- ▶ Essentially self-adjoint and discrete. (Spectral theorem)

The space of **harmonic forms** on M is

$$\mathcal{H}(M) := \ker(\Delta) \stackrel{!}{=} \{ \omega \in \Omega(M) \mid d\omega = d^{\dagger}\omega = 0 \} \quad (\dim \mathcal{H}(M) < \infty).$$

We have a natural map

$$\mathcal{H}(M) \longrightarrow H_{dR}(M)$$
$$\omega \longmapsto [\omega]$$

Hodge Theorem: This map is a isomorphism.

L^2 -Cohomology

M = oriented Riemannian manifold of dimension n. Define

 $\Omega_c(M):=\{\omega\in\Omega(M)\,|\,\mathrm{supp}(\omega)\text{ is compact}\}\quad \mathrm{and}\quad L^2(M):=\overline{\Omega_c(M)}^{L^2}.$

In this case we define the formal adjoint d^{\dagger} of d by

$$(d\omega_1, \omega_2)_{L^2} = (\omega_1, d^{\dagger}\omega_2)_{L^2} \quad \forall \omega_1, \omega_2 \in \Omega_c(M).$$

L^2 -Cohomology

M = oriented Riemannian manifold of dimension n. Define

 $\Omega_c(M):=\{\omega\in\Omega(M)\,|\,\mathrm{supp}(\omega)\text{ is compact}\}\quad \mathrm{and}\quad L^2(M):=\overline{\Omega_c(M)}^{L^2}.$

In this case we define the formal adjoint d^{\dagger} of d by

$$(d\omega_1, \omega_2)_{L^2} = (\omega_1, d^{\dagger}\omega_2)_{L^2} \quad \forall \omega_1, \omega_2 \in \Omega_c(M).$$

Consider the exterior derivative d defined on

$$\Omega_{(2)}(M) := \{ \omega \in \Omega(M) \cap L^2(M) \mid d\omega \in L^2(M) \}.$$

This yields to a complex

$$0 \longrightarrow \Omega^0_{(2)}(M) \xrightarrow{d} \Omega^1_{(2)}(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^n_{(2)}(M) \longrightarrow 0$$

The associated cohomology groups $H^*_{(2)}(M)$ define L^2 -cohomology of M, which we denote by $H^*_{(2)}(M)$.

A □ > A □ > A □ > A □ >

500

Example

Consider $M = \mathbb{R}$ with the Euclidean metric. Then

$$H_{(2)}^{k}(\mathbb{R}) = \begin{cases} 0, & \text{if } k = 0\\ \text{is infinite dimensional,} & \text{if } k = 1 \end{cases}$$

- Constant functions are not in $L^2(\mathbb{R})$.
- ► Let $\phi \in C_c(\mathbb{R}, \mathbb{C})$, then clearly $d(\phi dx) = 0$. If there exists $f \in C_c(\mathbb{R}, \mathbb{C})$ such that $df = \phi dx$ then

$$\int_{\mathbb{R}} \phi(x) dx = \int_{\mathbb{R}} df(x) = 0,$$

since the support of f is compact.

Example: Conical singularity

Let N be a closed manifold of dimension n with Riemannian metric g_N . Define the **cone on** N by $C(N) := (0, 1) \times N$ with metric Riemannian metric

$$g = dr^2 + r^2 g_N.$$

The L^2 -cohomology groups are:

Example: Conical singularity

Let N be a closed manifold of dimension n with Riemannian metric g_N . Define the **cone on** N by $C(N) := (0, 1) \times N$ with metric Riemannian metric

$$g = dr^2 + r^2 g_N.$$

The L^2 -cohomology groups are:

$$N \underbrace{\int_{(2)}^{k} (C(N))}_{k \geq \frac{n+1}{2}} H^{k}_{(2)}(C(N)) = \begin{cases} H^{k}(N), \text{ if } k < \frac{n+1}{2} \\ 0, \text{ if } k \geq \frac{n+1}{2} \end{cases}$$

For example: Let ω be an k-form on N and extend it trivially to C(N), then

$$\int_{C(N)} |\omega|_g^2 dx = \int_0^1 \int_N |\omega|_{g_N}^2 r^{n-2k} dy dr,$$

thus $\omega \in L^2(C(N)) \iff n - 2k > -1.$

Two closed extensions

Recall $\Omega_c(M) \subseteq \Omega_{(2)}(M) := \{ \omega \in \Omega(M) \cap L^2(M) \mid d\omega \in L^2(M) \}.$ We define two closed extensions of the exterior derivative:

• Minimal extension: $d_{\min}\omega = \beta$

$$\omega \in \text{Dom}(d_{\min}) \Longleftrightarrow \exists (\omega_n)_n \subset \Omega_c(M) \text{ such that } \omega_n \longrightarrow \omega$$

and $d\omega_n \longrightarrow \beta$ for some $\beta \in L^2(M)$.

• Maximal extension $d_{\max}\omega = \beta$

$$\omega \in \text{Dom}(d_{\max}) \Longleftrightarrow \exists (\omega_n)_n \subset \Omega_{(2)}(M) \text{ such that } \omega_n \longrightarrow \omega$$

and $d\omega_n \longrightarrow \beta$ for some $\beta \in L^2(M)$.

Clearly $d \subset d_{\min} \subset d_{\max}$.

Two closed extensions

Recall $\Omega_c(M) \subseteq \Omega_{(2)}(M) := \{ \omega \in \Omega(M) \cap L^2(M) \mid d\omega \in L^2(M) \}.$ We define two closed extensions of the exterior derivative:

• Minimal extension: $d_{\min}\omega = \beta$

$$\omega \in \text{Dom}(d_{\min}) \Longleftrightarrow \exists (\omega_n)_n \subset \Omega_c(M) \text{ such that } \omega_n \longrightarrow \omega$$

and $d\omega_n \longrightarrow \beta$ for some $\beta \in L^2(M)$.

• Maximal extension $d_{\max}\omega = \beta$

$$\omega \in \text{Dom}(d_{\max}) \Longleftrightarrow \exists (\omega_n)_n \subset \Omega_{(2)}(M) \text{ such that } \omega_n \longrightarrow \omega$$

and $d\omega_n \longrightarrow \beta$ for some $\beta \in L^2(M)$.

Clearly $d \subset d_{\min} \subset d_{\max}$.

► If we define
$$H_{(2),\#}(M) := \frac{\ker(d_{\max})}{\operatorname{im}(d_{\max})}$$
 then $H_{(2)}(M) \cong H_{(2),\#}(M)$.

• Reduced L^2 -cohomology:

$$\bar{H}_{(2),\#}(M) := \frac{\ker(d_{\max})}{\mathrm{im}(d_{\max})}.$$
Berlin
Mathematical
School

We define the space of L^2 -harmonic forms by

$$\mathcal{H}_{(2)}(M) := \{ \omega \in \Omega(M) \cap L^2(M) \mid d\omega = d^{\dagger}\omega = 0 \}$$

• Is the inclusion $I : \mathcal{H}_{(2)}(M) \longrightarrow H_{(2)}(M)$ an isomorphism? If it does we say that the **strong Hodge theorem holds**.

We define the space of L^2 -harmonic forms by

$$\mathcal{H}_{(2)}(M) := \{ \omega \in \Omega(M) \cap L^2(M) \mid d\omega = d^{\dagger}\omega = 0 \}$$

• Is the inclusion $I : \mathcal{H}_{(2)}(M) \longrightarrow H_{(2)}(M)$ an isomorphism? If it does we say that the **strong Hodge theorem holds**.

• The map I is surjective if $im(d_{max})$ is closed, i.e.

$$\overline{\operatorname{im}(d_{\max})} = \operatorname{im}(d_{\max}).$$

In particular, this holds if $\dim(H^*_{(2)}(M)) < \infty$.

We define the space of L^2 -harmonic forms by

$$\mathcal{H}_{(2)}(M) := \{ \omega \in \Omega(M) \cap L^2(M) \mid d\omega = d^{\dagger}\omega = 0 \}$$

• Is the inclusion $I : \mathcal{H}_{(2)}(M) \longrightarrow H_{(2)}(M)$ an isomorphism? If it does we say that the **strong Hodge theorem holds**.

• The map I is surjective if $im(d_{max})$ is closed, i.e.

$$\overline{\operatorname{im}(d_{\max})} = \operatorname{im}(d_{\max}).$$

In particular, this holds if $\dim(H^*_{(2)}(M)) < \infty$.

▶ The map *I* is *injective* if **Stokes theorem holds in the** L^2 **sense** (L^2 ST), i.e. $d_{\min} = d_{\max}$, equivalently

 $(d_{\max}\omega_1,\omega_2) = (\omega_1, d_{\max}^{\dagger}\omega_2) \quad \forall \omega_1 \in \text{Dom}(d_{\max}), \omega_2 \in \text{Dom}(d_{\max}^{\dagger}).$

We define the space of L^2 -harmonic forms by

$$\mathcal{H}_{(2)}(M) := \{ \omega \in \Omega(M) \cap L^2(M) \mid d\omega = d^{\dagger}\omega = 0 \}$$

• Is the inclusion $I : \mathcal{H}_{(2)}(M) \longrightarrow H_{(2)}(M)$ an isomorphism? If it does we say that the **strong Hodge theorem holds**.

• The map I is surjective if $im(d_{max})$ is closed, i.e.

$$\overline{\operatorname{im}(d_{\max})} = \operatorname{im}(d_{\max}).$$

In particular, this holds if $\dim(H^*_{(2)}(M)) < \infty$.

▶ The map I is *injective* if Stokes theorem holds in the L^2 sense (L^2 ST), i.e. $d_{\min} = d_{\max}$, equivalently

 $(d_{\max}\omega_1,\omega_2) = (\omega_1, d_{\max}^{\dagger}\omega_2) \quad \forall \omega_1 \in \text{Dom}(d_{\max}), \omega_2 \in \text{Dom}(d_{\max}^{\dagger}).$

Main idea: From the Kodira decomposition we obtain

$$H_{(2)}(M) = \underbrace{\ker(d_{\max}) \cap \ker(d_{\min}^{\dagger})}_{(L^2ST) \Rightarrow = \mathcal{H}_{(2)}(M)} \oplus \left(\frac{\overline{\operatorname{im}(d_{\max})}}{\operatorname{im}(d_{\max})}\right) \underset{\text{School}}{\bigotimes} \underset{\text{School}}{\operatorname{Berlin}} \underset{\text{School}}{\bigotimes}$$

Main Message:

If the $L^2\mbox{-}{\rm cohomology}$ has finite dimension and $(L^2{\rm ST})$ holds, then the strong Hodge theorem holds, i.e.

 $H_{(2)}(M) \cong \mathcal{H}_{(2)}(M).$

Main Message:

If the L^2 -cohomology has finite dimension and (L^2ST) holds, then the strong Hodge theorem holds, i.e.

 $H_{(2)}(M) \cong \mathcal{H}_{(2)}(M).$

Concerning the (L^2ST) :

• Gaffney: M complete $\implies (L^2 ST)$ holds.

Main Message:

If the L^2 -cohomology has finite dimension and (L^2ST) holds, then the strong Hodge theorem holds, i.e.

$$H_{(2)}(M) \cong \mathcal{H}_{(2)}(M).$$

Concerning the (L^2ST) :

- Gaffney: M complete $\implies (L^2 ST)$ holds.
- For conical singularities $M = M_0 \cup C(N)$,

Cheeger: (L^2ST) holds for M if:

- $(L^2 ST)$ holds for N.
- $H_{(2)}^{\dim N/2}(N) = 0.$

• If (L^2ST) holds , Poincaré duality holds as well. Then L^2 -signature of M is well defined in this case.

- If (L^2ST) holds , Poincaré duality holds as well. Then L^2 -signature of M is well defined in this case.
- ▶ There exists a Mayer-Vietoris sequences for L^2 -cohomology.

- If (L^2ST) holds , Poincaré duality holds as well. Then L^2 -signature of M is well defined in this case.
- ▶ There exists a Mayer-Vietoris sequences for L^2 -cohomology.
- The L²-cohomology of singular spaces is intimately related to the intersection cohomology of Goresky-MacPherson (I^pH*(M)). The parameter p is called a perversity and measures the failure of Poincaré duality on singular spaces.

- If (L^2ST) holds , Poincaré duality holds as well. Then L^2 -signature of M is well defined in this case.
- ▶ There exists a Mayer-Vietoris sequences for L^2 -cohomology.
- ► The L²-cohomology of singular spaces is intimately related to the intersection cohomology of Goresky-MacPherson (I^pH^{*}(M)). The parameter p is called a perversity and measures the failure of Poincaré duality on singular spaces.
- ▶ There are various extensions of L^2 , for cohomology example, cohomology with coefficients or Dolbeault cohomology $(\bar{\partial})$ for complex manifolds.

- If (L^2ST) holds , Poincaré duality holds as well. Then L^2 -signature of M is well defined in this case.
- ▶ There exists a Mayer-Vietoris sequences for L^2 -cohomology.
- The L²-cohomology of singular spaces is intimately related to the intersection cohomology of Goresky-MacPherson (I^pH*(M)). The parameter p is called a **perversity** and measures the failure of Poincaré duality on singular spaces.
- ▶ There are various extensions of L^2 , for cohomology example, cohomology with coefficients or Dolbeault cohomology $(\bar{\partial})$ for complex manifolds.
- The appropriate setting to study all these notions are Hilbert Complexes [Brüning & Lesch].

$$0 \longrightarrow \mathscr{H}_0 \overset{d_0}{\longrightarrow} \mathscr{H}_1 \overset{d_1}{\longrightarrow} \cdots \overset{d_{n-2}}{\longrightarrow} \mathscr{H}_{n-1} \overset{d_{n-1}}{\longrightarrow} \mathscr{H}_n \longrightarrow 0$$

 $\mathscr{H}_i = \text{Hilbert space and } d_i : \text{Dom}(d_i) \subseteq \mathscr{H}_i \longrightarrow \mathscr{H}_{i+1}$ are a closed operators such that $d_i \circ d_{i-1} = 0$.

THANK YOU!

